Skip to main content

A Multi-Objective Evolutionary Algorithm Fitness Function for Case-Base Maintenance

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7969))

Included in the following conference series:

  • 1234 Accesses

Abstract

Case-Base Maintenance (CBM) has two important goals. On the one hand, it aims to reduce the size of the case-base. On the other hand, it has to improve the accuracy of the CBR system. CBM can be represented as a multi-objective optimization problem to achieve both goals. Multi-Objective Evolutionary Algorithms (MOEAs) have been recognised as appropriate techniques for multi-objective optimisation because they perform a search for multiple solutions in parallel. In the present paper we introduce a fitness function based on the Complexity Profiling model to perform CBM with MOEA, and we compare its results against other known CBM approaches. From the experimental results, CBM with MOEA shows regularly good results in many case-bases, despite the amount of redundant and noisy cases, and with a significant potential for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brighton, H., Mellish, C.: On the consistency of information filters for lazy learning algorithms. In: Å»ytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 283–288. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Coello, C.C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation (2007)

    Google Scholar 

  3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  4. Cummins, L., Bridge, D.: Maintenance by a committee of experts: The MACE approach to case-base maintenance. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 120–134. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2) (2002)

    Google Scholar 

  6. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  7. Gates, G.: Reduced nearest neighbor rule. IEEE Transactions on Information Theory 18(3), 431 (1972)

    Article  Google Scholar 

  8. Hart, P.: Condensed nearest neighbor rule. IEEE Transactions on Information Theory 14(3), 515+ (1968)

    Google Scholar 

  9. Holland, J.H.: Adaptation in Natural And Artificial Systems. MIT Press (1975)

    Google Scholar 

  10. Ishibuchi, H., Nakashima, T., Nii, M.: Genetic-algorithm-based instance and feature selection. In: Frasson, C., McCalla, G.I., Gauthier, G. (eds.) ITS 1992. LNCS, vol. 608, pp. 95–112. Springer, Heidelberg (1992)

    Google Scholar 

  11. Cano, J.R., Herrera, F., Lozano, M.: Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data & Knowledge Engineering 60(1), 90–108 (2007)

    Article  Google Scholar 

  12. Kim, K., Han, I.: Maintaining case-based reasoning systems using a genetic algorithms approach. Expert Systems with Applications 21(3), 139–145 (2001)

    Article  Google Scholar 

  13. Leake, D., Wilson, M.: How many cases do you need? Assessing and predicting case-base coverage. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 92–106. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Leake, D.B., Wilson, D.C.: Categorizing case-base maintenance: Dimensions and directions. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 196–207. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case based reasoning. In: 20th National Conference on Artificial Intelligence, AAAI 2005, vol. 1, pp. 216–221 (2005)

    Google Scholar 

  16. Massie, S., Craw, S., Wiratunga, N.: Complexity profiling for informed case-base editing. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 325–339. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. McKenna, E., Smyth, B.: Competence-guided case-base editing techniques. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 186–197. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Pan, R., Yang, Q., Pan, S.: Mining competent case bases for case-based reasoning. Artificial Intelligence 171(16-17), 1039–1068 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smyth, B., Keane, M.: Remembering to forget - a competence-preserving case deletion policy for case-based reasoning systems. In: International Joint Conference on Artificial Intelligence, IJCAI 1995, pp. 377–382 (1995)

    Google Scholar 

  20. Smyth, B., McKenna, E.: Competence guided incremental footprint-based retrieval. Knowledge-Based Systems 14(3-4), 155–161 (2001)

    Article  Google Scholar 

  21. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems Man and Cybernetics SMC 2(3), 408 (1972)

    Google Scholar 

  22. Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algorithms. Machine Learning 38(3), 257–286 (2000)

    Article  MATH  Google Scholar 

  23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lupiani, E., Craw, S., Massie, S., Juarez, J.M., Palma, J.T. (2013). A Multi-Objective Evolutionary Algorithm Fitness Function for Case-Base Maintenance. In: Delany, S.J., Ontañón, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2013. Lecture Notes in Computer Science(), vol 7969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39056-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39056-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39055-5

  • Online ISBN: 978-3-642-39056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics