Abstract
The Key-Dependent Message (KDM) security requires that an encryption scheme remains secure, even if an adversary has access to encryptions of messages that depend on the secret key. In a multi-user surrounding, a key-dependent message can be any polynomial-time function f(sk 1, sk 2, …, sk n ) in the secret keys of the users. The Key-Dependent Message Chosen-Ciphertext (KDM-CCA2) security can be similarly defined if the adversary is also allowed to query a decryption oracle. To date, KDM security has been obtained by a few constructions. But most of them are limited f(sk 1, sk 2, …, sk n ) to affine functions. As to KDM-CCA2 security, there are only two constructions available. However, neither of them has comparable key sizes and reasonable efficiency, compared to the traditional KDM-free but CCA2 secure public key encryption schemes. This article defines a new function ensemble, and shows how to obtain KDM-CCA2 security with respect to this new ensemble from the traditional Cramer-Shoup (CS) cryptosystem. To obtain KDM security, the CS system has to be tailored for encryption of key-dependent messages. We present an efficient instantiation of the Cramer-Shoup public-key encryption (CS-PKE) scheme over the subgroup of quadratic residues in \(\mathbb{Z}_p^*\), where p is a safe prime, and prove the CS-PKE to be KDM-CCA2 secure with respect to the new function ensemble. We show that our proposed ensemble covers some affine functions, as well as other functions that are not contained in the affine ensemble. At the same time, the CS-PKE scheme with respect to our proposed function ensemble finds immediate application to anonymous credential systems. Compared to other KDM-CCA2 secure proposals, the CS scheme is the most practical one due to its short ciphertext size and computational efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the presence of key-cycles. In: De Capitani di Vimercati, S., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)
Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based encryption. In: Fischlin, et al. (eds.) [16], pp. 334–352
Backes, M., Pfitzmann, B., Scedrov, A.: Key-dependent message security under active attacks - BRSIM/UC-soundness of dolev-yao-style encryption with key cycles. Journal of Computer Security 16(5), 497–530 (2008)
Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)
Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)
Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)
Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)
Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)
Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011)
Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009)
Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)
Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular security. In: Fischlin, et al. (eds.) [16], pp. 540–557
Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)
Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2004), http://dx.doi.org/10.1137/S0097539702403773
Fischlin, M., Buchmann, J., Manulis, M. (eds.): PKC 2012. LNCS, vol. 7293. Springer, Heidelberg (2012)
Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidelberg (2012)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart (ed.) [31], pp. 415–432
Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. Cryptology ePrint Archive, Report 2012/150 (2012), http://eprint.iacr.org/ (to appear, Eurocrypt 2013)
Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)
Hofheinz, D., Unruh, D.: Towards key-dependent message security in the standard model. In: Smart (ed.) [31], pp. 108–126
Lu, X., Li, B., Mei, Q., Xu, H.: Key-dependent message security for division function: Discouraging anonymous credential sharing. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 297–308. Springer, Heidelberg (2011)
Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011)
Malkin, T., Teranishi, I., Yung, M.: Key dependent message security: recent results and applications. In: Sandhu, R.S., Bertino, E. (eds.) CODASPY, pp. 3–12. ACM (2011)
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Ortiz, H. (ed.) STOC, pp. 427–437. ACM (1990)
Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)
Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and from progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074 (2007), http://eprint.iacr.org/
Smart, N.P. (ed.): EUROCRYPT 2008. LNCS, vol. 4965. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qin, B., Liu, S., Huang, Z. (2013). Key-Dependent Message Chosen-Ciphertext Security of the Cramer-Shoup Cryptosystem. In: Boyd, C., Simpson, L. (eds) Information Security and Privacy. ACISP 2013. Lecture Notes in Computer Science, vol 7959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39059-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-39059-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39058-6
Online ISBN: 978-3-642-39059-3
eBook Packages: Computer ScienceComputer Science (R0)