Skip to main content

Black-Box Separations and Their Adaptability to the Non-uniform Model

  • Conference paper
Information Security and Privacy (ACISP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7959))

Included in the following conference series:

  • 1749 Accesses

Abstract

Oracle separation methods are used in cryptography to rule out black-box reductions between cryptographic primitives. It is sufficient to find an oracle relative to which the base primitive exists but there are no secure instances of the constructed primitive. It is often beyond our current reach to construct a fixed oracle with such properties because it is difficult to prove the existence of secure base primitives. To overcome this gap, randomized oracles are used to create random base primitives that are secure on average. After that, a fixed oracle is extracted from the probability distribution by using non-constructive probabilistic arguments and the countability of the set of adversaries. Such extraction only applies to uniform reductions because the set of non-uniform adversaries is not countable. We study how to adapt oracle separation results to the non-uniform model. The known separation techniques are capable of ruling out the so-called fully black-box reductions and a certain strong form of semi black-box reductions also in the non-uniform model. We study how to go beyond the barrier of strong semi black-box reductions and show that this is possible by using random oracles with auxiliary advice. For that end, we prove a conjecture of Unruh (2007) about pre-sampling being a sufficient substitute for advice for any oracle distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buldas, A., Jürgenson, A., Niitsoo, M.: Efficiency bounds for adversary constructions in black-box reductions. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 264–275. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Buldas, A., Laur, S., Niitsoo, M.: Oracle separation in the non-uniform model. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 230–244. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Gennaro, R., Gertner, Y., Katz, J.: Lower bounds on the efficiency of encryption and digital signature schemes. In: STOC 2003, pp. 417–425 (2003)

    Google Scholar 

  4. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic cryptographic constructions. SIAM Journal on Computing 35, 217–246 (2006)

    Article  MathSciNet  Google Scholar 

  5. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: FOCS 2000, pp. 325–335 (2000)

    Google Scholar 

  6. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: STOC 1989, pp. 44–61 (1989)

    Google Scholar 

  8. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way permutation-based hash functions. In: FOCS 1999, pp. 535–542 (1999)

    Google Scholar 

  9. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buldas, A., Niitsoo, M. (2013). Black-Box Separations and Their Adaptability to the Non-uniform Model. In: Boyd, C., Simpson, L. (eds) Information Security and Privacy. ACISP 2013. Lecture Notes in Computer Science, vol 7959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39059-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39059-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39058-6

  • Online ISBN: 978-3-642-39059-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics