Abstract
The LLL algorithm is one of the most studied lattice basis reduction algorithms in the literature. Among all of its variants, the floating point version, also known as L2, is the most popular one, due to its efficiency and its practicality. In its classic setting, the floating point precision is a fixed value, determined by the dimension of the input basis at the initiation of the algorithm. We observe that a fixed precision overkills the problem, since one does not require a huge precision to handle the process at the beginning of the reduction. In this paper, we propose an adaptive way to handle the precision, where the precision is adaptive during the procedure. Although this optimization does not change the worst-case complexity, it reduces the average-case complexity by a constant factor. In practice, we observe an average 20% acceleration in our implementation.
This work is supported by ARC Future Fellowship FT0991397.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
mpfr library, http://www.mpfr.org/
SVP CHALLENGE, http://www.latticechallenge.org/svp-challenge/index.php
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. the user language. J. Symbolic Comput. 24(3-4), 235–265 (1997)
Bremner, M.: Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications. Pure and Applied Mathematics. CRC Press Inc. (2012)
Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer (ed.) [13], pp. 178–189
Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer (ed.) [13], pp. 155–165
Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)
Goldstein, D., Mayer, A.: On the equidistribution of hecke points. Forum Mathematicum 15, 165–189 (2006)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 513–534 (1982)
Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 50. SIAM Publications (1986)
Maurer, U.M. (ed.): EUROCRYPT 1996. LNCS, vol. 1070. Springer, Heidelberg (1996)
Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems, A Cryptographic Perspective. Kluwer Academic Publishers (2002)
Minkowski, H.: Geometrie der Zahlen. B. G. Teubner, Leipzig (1896)
Nguen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)
Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)
Nguyen, P.Q., Stehlé, D.: An lll algorithm with quadratic complexity. SIAM J. Comput. 39(3), 874–903 (2009)
Nguyen, P.Q., Valle, B.: The LLL Algorithm: Survey and Applications, 1st edn. Springer Publishing Company, Incorporated (2009)
Pujol, X., Stehlé, D., Cade, D.: fplll library, http://perso.ens-lyon.fr/xavier.pujol/fplll/
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Schnorr, C.-P.: A more efficient algorithm for lattice basis reduction. J. Algorithms 9(1), 47–62 (1988)
Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)
Shoup, V.: NTL - A Library for Doing Number Theory, http://www.shoup.net/ntl/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Plantard, T., Susilo, W., Zhang, Z. (2013). Adaptive Precision Floating Point LLL. In: Boyd, C., Simpson, L. (eds) Information Security and Privacy. ACISP 2013. Lecture Notes in Computer Science, vol 7959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39059-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-39059-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39058-6
Online ISBN: 978-3-642-39059-3
eBook Packages: Computer ScienceComputer Science (R0)