Skip to main content

Bifurcation Control of a Fractional Order Hindmarsh-Rose Neuronal Model

  • Conference paper
Advances in Neural Networks – ISNN 2013 (ISNN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7952))

Included in the following conference series:

  • 3818 Accesses

Abstract

This paper proposes to use a state feedback method to control the Hopf bifurcation for a fractional order Hindmarsh-Rose neuronal model. The order of the fractional order Hindmarsh-Rose neuronal model is chosen as the bifurcation parameter. The analysis shows that in the absences of the state feedback controller, the fractional order model loses stability via the Hopf bifurcation early, and can maintain the stability only in a certain domain of the gain parameter. When applying the state feedback controller to the model, the onset of the undesirable Hopf bifurcation is postponed. Thus, the stability domain is extended, and the model possesses the stability in a larger parameter range. Numerical simulations are given to justify the validity of the state feedback controller in bifurcation control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Bagley, R.L., Calico, R.A.: Fractional Order State Equations for the Control of Viscoelastically Damped Structures. J. Guid. Control Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  3. Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear Approximation of Transfer Function with a Pole of Fractional Order. IEEE Trans Autom. Control AC-29, 441–444 (1984)

    Article  Google Scholar 

  4. Ichise, M., Nagayanagi, Y., Kojima, T.: An Analog Simulation of Noninteger Order Transfer Functions for Analysis of Electrode Process. J. Electroanal. Chem. 33, 253–265 (1971)

    Article  Google Scholar 

  5. Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

    Google Scholar 

  6. Laskin, N.: Fractional Market Dynamics. Phys. A 287, 482–492 (2000)

    Article  MathSciNet  Google Scholar 

  7. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Levy Processes and Fractional Kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

    Article  Google Scholar 

  8. Xiao, M.: Stability Analysis and Hopf-Type Bifurcation of A Fractional Order Hindmarsh-Rose Neuronal Model. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds.) ISNN 2012, Part I. LNCS, vol. 7367, pp. 217–224. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Abed, E.H., Fu, J.H.: Local Feedback Stabilization and Bifurcation Control: I. Hopf Bifurcation. Syst. Control Lett. 7, 11–17 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G.R., Moiola, J.L., Wang, H.O.: Bifurcation Control: Theories, Methods and Applications. Int. J. Bifurcation and Chaos 10, 511–548 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Wang, H., Abed, E.H.: Bifurcation Control of A Chaotic System. Automatica 31, 1213–1226 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tesi, A., Abed, E.H., Genesio, R., Wang, H.O.: Harmonic Balance Analysis of Period-Doubling Bifurcations with Implications for Control of Nonlinear Dynamics. Automatica 32, 1255–1271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu, P., Chen, G.R.: Hopf Bifurcation Control Using Nonlinear Feedback with Polynomial Functions. Int. J. Bifurcation and Chaos 14, 1683–1704 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiao, M. (2013). Bifurcation Control of a Fractional Order Hindmarsh-Rose Neuronal Model. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39068-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39068-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39067-8

  • Online ISBN: 978-3-642-39068-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics