Abstract
This paper proposes to use a state feedback method to control the Hopf bifurcation for a fractional order Hindmarsh-Rose neuronal model. The order of the fractional order Hindmarsh-Rose neuronal model is chosen as the bifurcation parameter. The analysis shows that in the absences of the state feedback controller, the fractional order model loses stability via the Hopf bifurcation early, and can maintain the stability only in a certain domain of the gain parameter. When applying the state feedback controller to the model, the onset of the undesirable Hopf bifurcation is postponed. Thus, the stability domain is extended, and the model possesses the stability in a larger parameter range. Numerical simulations are given to justify the validity of the state feedback controller in bifurcation control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Bagley, R.L., Calico, R.A.: Fractional Order State Equations for the Control of Viscoelastically Damped Structures. J. Guid. Control Dyn. 14, 304–311 (1991)
Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear Approximation of Transfer Function with a Pole of Fractional Order. IEEE Trans Autom. Control AC-29, 441–444 (1984)
Ichise, M., Nagayanagi, Y., Kojima, T.: An Analog Simulation of Noninteger Order Transfer Functions for Analysis of Electrode Process. J. Electroanal. Chem. 33, 253–265 (1971)
Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)
Laskin, N.: Fractional Market Dynamics. Phys. A 287, 482–492 (2000)
Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Levy Processes and Fractional Kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)
Xiao, M.: Stability Analysis and Hopf-Type Bifurcation of A Fractional Order Hindmarsh-Rose Neuronal Model. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds.) ISNN 2012, Part I. LNCS, vol. 7367, pp. 217–224. Springer, Heidelberg (2012)
Abed, E.H., Fu, J.H.: Local Feedback Stabilization and Bifurcation Control: I. Hopf Bifurcation. Syst. Control Lett. 7, 11–17 (1986)
Chen, G.R., Moiola, J.L., Wang, H.O.: Bifurcation Control: Theories, Methods and Applications. Int. J. Bifurcation and Chaos 10, 511–548 (2000)
Wang, H., Abed, E.H.: Bifurcation Control of A Chaotic System. Automatica 31, 1213–1226 (1995)
Tesi, A., Abed, E.H., Genesio, R., Wang, H.O.: Harmonic Balance Analysis of Period-Doubling Bifurcations with Implications for Control of Nonlinear Dynamics. Automatica 32, 1255–1271 (1996)
Yu, P., Chen, G.R.: Hopf Bifurcation Control Using Nonlinear Feedback with Polynomial Functions. Int. J. Bifurcation and Chaos 14, 1683–1704 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xiao, M. (2013). Bifurcation Control of a Fractional Order Hindmarsh-Rose Neuronal Model. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39068-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-39068-5_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39067-8
Online ISBN: 978-3-642-39068-5
eBook Packages: Computer ScienceComputer Science (R0)