Skip to main content

Bias-Guided Random Walk for Network-Based Data Classification

  • Conference paper
Advances in Neural Networks – ISNN 2013 (ISNN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7952))

Included in the following conference series:

  • 3795 Accesses

Abstract

This paper presents a new network-based classification technique using limiting probabilities from random walk theory. Instead of using a traditional heuristic to classify data relying on physical features such as similarity or density distribution, it uses a concept called ease of access. By means of an underlying network, in which nodes represent states for the random walk process, unlabeled instances are classified with the label of the most easily reached class. The limiting probabilities are used as a measure for the ease of access by taking into account the biases provided by an unlabeled instance in a specific adjacency matrix weight composition. In this way, the technique allows data classification from a different viewpoint. Simulation results suggest that the proposed scheme is competitive with current and well-known classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Stork, D.G., Hart, P.E.: Pattern classification, 2nd edn. Wiley-Interscience (2000)

    Google Scholar 

  2. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  3. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  4. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  5. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley (2005)

    Google Scholar 

  6. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the Eighteenth International Conference on Machine Learning, San Francisco, pp. 19–26. Morgan Kaufmann (2001)

    Google Scholar 

  7. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proc. 20th Int. Conf. Mach. Learn., pp. 912–919 (2003)

    Google Scholar 

  8. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Belkin, M., Niyogi, P., Sindhwani, V.: On manifold regularization. In: Proc. 10th Int. Workshop Artif. Intell. Stat., pp. 17–24 (2005)

    Google Scholar 

  10. Zhou, D., Schölkopf, B.: Adaptive computation and machine learning. In: Discrete Regularization, pp. 237–250. MIT Press, Cambridge (2006)

    Google Scholar 

  11. Silva, T., Zhao, L.: Network-based stochastic semisupervised learning. IEEE Transactions on Neural Networks and Learning Systems 23(3), 451–466 (2012)

    Article  Google Scholar 

  12. Zheng, X., Lin, X.: Automatic determination of intrinsic cluster number family in spectral clustering using random walk on graph. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 5, pp. 3471–3474 (October 2004)

    Google Scholar 

  13. Alamgir, M., von Luxburg, U.: Multi-agent random walks for local clustering on graphs. In: 2010 IEEE 10th International Conference on Data Mining, ICDM, pp. 18–27 (December 2010)

    Google Scholar 

  14. Cai, B., Wang, H., Zheng, H., Wang, H.: An improved random walk based clustering algorithm for community detection in complex networks. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, SMC, pp. 2162–2167 (October 2011)

    Google Scholar 

  15. Breve, F., Zhao, L., Quiles, M., Pedrycz, W., Liu, J.: Particle competition and cooperation in networks for semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering 24(9), 1686–1698 (2012)

    Article  Google Scholar 

  16. Silva, T., Zhao, L.: Stochastic competitive learning in complex networks. IEEE Transactions on Neural Networks and Learning Systems 23(3), 385–398 (2012)

    Article  Google Scholar 

  17. Bertini, J.R., Zhao, L., Motta, R., de Andrade Lopes, A.: A nonparametric classification method based on k-associated graphs. Information Sciences 181, 5435–5456 (2011)

    Article  MathSciNet  Google Scholar 

  18. Cupertino, T.H., Silva, T., Zhao, L.: Classification of multiple observation sets via network modularity. Neural Computing and Applications (Print) (2012)

    Google Scholar 

  19. Cupertino, T.H., Zhao, L.: Using katz centrality to classify multiple pattern transformations. In: Proceedings of the 2012 Brazilian Symposium on Neural Networks, pp. 1–6 (2012)

    Google Scholar 

  20. Silva, T., Zhao, L.: Network-based high level data classification. IEEE Transactions on Neural Networks and Learning Systems 23(6), 954–970 (2012)

    Article  Google Scholar 

  21. Gallager, R.G.: Discrete Stochastic Processes, 1st edn. Springer (1996)

    Google Scholar 

  22. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  23. Kim, J.H.: Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics and Data Analysis 53, 3735–3745 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Quinlan, J.R.: C4.5: Programs for Machine Learning, 1st edn. Morgan Kaufman Publishers (1993)

    Google Scholar 

  25. Vapnik, V.: The Nature of Statistical Learning Theory, 1st edn. Springer (1999)

    Google Scholar 

  26. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13, 415–425 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cupertino, T.H., Zhao, L. (2013). Bias-Guided Random Walk for Network-Based Data Classification. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39068-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39068-5_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39067-8

  • Online ISBN: 978-3-642-39068-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics