Abstract
We obtain upper and lower bounds for running times of exponential time algorithms for the detection of weak backdoor sets of 3CNF formulas, considering various base classes. These results include (omitting polynomial factors), (i) a 4.54k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Horn formulas; (ii) a 2.27k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Krom formulas. These bounds improve an earlier known bound of 6k. We also prove a 2k lower bound for these problems, subject to the Strong Exponential Time Hypothesis.
All authors acknowledge support from the OeAD/DST (Austrian Indian collaboration grant, IN13/2011). Szeider acknowledges the support by the ERC, grant reference 239962.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boros, E., Hammer, P.L., Sun, X.: Recognition of q-Horn formulae in linear time. Discr. Appl. Math. 55(1), 1–13 (1994)
Crama, Y., Ekin, O., Hammer, P.L.: Variable and term removal from Boolean formulae. Discr. Appl. Math. 75(3), 217–230 (1997)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)
Franco, J., Van Gelder, A.: A perspective on certain polynomial time solvable classes of satisfiability. Discr. Appl. Math. 125, 177–214 (2003)
Gaspers, S., Ordyniak, S., Ramanujan, M.S., Saurabh, S., Szeider, S.: Backdoors to q-horn. In: Portier, N., Wilke, T. (eds.) Proceedings of the 30th International Symposium on Theoretical Aspects of Computer Science (STACS). Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 67–79 (2013)
Gaspers, S., Szeider, S.: Backdoors to acyclic SAT. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 363–374. Springer, Heidelberg (2012)
Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)
Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. of Computer and System Sciences 62(2), 367–375 (2001)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. of Computer and System Sciences 63(4), 512–530 (2001)
Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bulletin of the European Association for Theoretical Computer Science 105, 41–72 (2011)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its. Applications. Oxford University Press, Oxford (2006)
Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-hitting set. J. Discrete Algorithms 1(1), 89–102 (2003)
Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: Proceedings of SAT 2004 (Seventh International Conference on Theory and Applications of Satisfiability Testing), Vancouver, BC, Canada, May 10-13, pp. 96–103 (2004)
Raman, V., Shankar, B.S.: Improved fixed-parameter algorithm for the minimum weight 3-SAT problem. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 265–273. Springer, Heidelberg (2013)
Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 1173–1178. Morgan Kaufmann (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Misra, N., Ordyniak, S., Raman, V., Szeider, S. (2013). Upper and Lower Bounds for Weak Backdoor Set Detection. In: Järvisalo, M., Van Gelder, A. (eds) Theory and Applications of Satisfiability Testing – SAT 2013. SAT 2013. Lecture Notes in Computer Science, vol 7962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39071-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-39071-5_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39070-8
Online ISBN: 978-3-642-39071-5
eBook Packages: Computer ScienceComputer Science (R0)