Skip to main content

Upper and Lower Bounds for Weak Backdoor Set Detection

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2013 (SAT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7962))

Abstract

We obtain upper and lower bounds for running times of exponential time algorithms for the detection of weak backdoor sets of 3CNF formulas, considering various base classes. These results include (omitting polynomial factors), (i) a 4.54k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Horn formulas; (ii) a 2.27k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Krom formulas. These bounds improve an earlier known bound of 6k. We also prove a 2k lower bound for these problems, subject to the Strong Exponential Time Hypothesis.

All authors acknowledge support from the OeAD/DST (Austrian Indian collaboration grant, IN13/2011). Szeider acknowledges the support by the ERC, grant reference 239962.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boros, E., Hammer, P.L., Sun, X.: Recognition of q-Horn formulae in linear time. Discr. Appl. Math. 55(1), 1–13 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crama, Y., Ekin, O., Hammer, P.L.: Variable and term removal from Boolean formulae. Discr. Appl. Math. 75(3), 217–230 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  Google Scholar 

  4. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)

    Google Scholar 

  5. Franco, J., Van Gelder, A.: A perspective on certain polynomial time solvable classes of satisfiability. Discr. Appl. Math. 125, 177–214 (2003)

    Article  MATH  Google Scholar 

  6. Gaspers, S., Ordyniak, S., Ramanujan, M.S., Saurabh, S., Szeider, S.: Backdoors to q-horn. In: Portier, N., Wilke, T. (eds.) Proceedings of the 30th International Symposium on Theoretical Aspects of Computer Science (STACS). Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 67–79 (2013)

    Google Scholar 

  7. Gaspers, S., Szeider, S.: Backdoors to acyclic SAT. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 363–374. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. of Computer and System Sciences 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. of Computer and System Sciences 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bulletin of the European Association for Theoretical Computer Science 105, 41–72 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its. Applications. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  13. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-hitting set. J. Discrete Algorithms 1(1), 89–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: Proceedings of SAT 2004 (Seventh International Conference on Theory and Applications of Satisfiability Testing), Vancouver, BC, Canada, May 10-13, pp. 96–103 (2004)

    Google Scholar 

  15. Raman, V., Shankar, B.S.: Improved fixed-parameter algorithm for the minimum weight 3-SAT problem. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 265–273. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 1173–1178. Morgan Kaufmann (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Misra, N., Ordyniak, S., Raman, V., Szeider, S. (2013). Upper and Lower Bounds for Weak Backdoor Set Detection. In: Järvisalo, M., Van Gelder, A. (eds) Theory and Applications of Satisfiability Testing – SAT 2013. SAT 2013. Lecture Notes in Computer Science, vol 7962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39071-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39071-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39070-8

  • Online ISBN: 978-3-642-39071-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics