Skip to main content

Extreme Points of the Credal Sets Generated by Elementary Comparative Probabilities

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7958))

  • 898 Accesses

Abstract

When using convex probability sets (or, equivalently, lower previsions) as models of uncertainty, identifying extreme points can be useful to perform various computations or to use some algorithms. In general, sets induced by specific models such as possibility distributions, linear vacuous mixtures or 2-monotone measures may have extreme points easier to compute than generic convex sets. In this paper, we study extreme points of another specific model: comparative probability orderings between the elements of a finite space. We use these extreme points to study the properties of the lower probability induced by this set, and connect comparative probabilities with other uncertainty models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  2. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  3. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953–1954)

    Google Scholar 

  4. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Technical Report SAND2002–4015, Sandia National Laboratories (January 2003)

    Google Scholar 

  5. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    MATH  Google Scholar 

  6. Berger, J.O.: An overview of robust Bayesian analysis. Test 3, 5–124 (1994); With discussion

    Google Scholar 

  7. Levi, I.: The enterprise of knowledge. MIT Press, Cambridge (1980)

    Google Scholar 

  8. Koopman, B.: The axioms and algebra of intuitive probability. Annals of Mathematics 41, 269–292 (1940)

    Article  MathSciNet  Google Scholar 

  9. Fine, T.: Theories of Probability. Academic Press, New York (1973)

    MATH  Google Scholar 

  10. Suppes, P.: The measurement of belief. Journal of the Royal Statistical Society. Series B (Methodological) 36, 160–191 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Walley, P., Fine, T.L.: Varieties of modal (classificatory) and comparative probability. Synthese 41, 321–374 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Regoli, G.: Comparative probability and robustness. Lecture Notes-Monograph Series, pp. 343–352 (1996)

    Google Scholar 

  13. Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical Social Sciences 17(3), 263–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miranda, E., Couso, I., Gil, P.: Extreme points of credal sets generated by 2-alternating capacities. International Journal of Approximate Reasoning 33(1), 95–115 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Campos, L.M., Huete, J.F., Moral, S.: Probability intervals: a tool for uncertain reasoning. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2, 167–196 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gulordava, K.: Empirical evaluation of credal classifiers. Master’s thesis, University of Lugano (June 2010); Supervised by Zaffalon, M., and Corani, G.

    Google Scholar 

  18. Wallner, A.: Extreme points of coherent probabilities in finite spaces. International Journal of Approximate Reasoning 44(3), 339–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Warshall, S.: A theorem on Boolean matrices. Journal of the ACM 9(1), 11–12 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Walley, P.: Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning 24, 125–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Denneberg, D.: Non-Additive Measure and Integral. Kluwer Academic, Dordrecht (1994)

    Book  MATH  Google Scholar 

  22. Walley, P.: Coherent lower (and upper) probabilities. Statistics Research Report 22, University of Warwick, Coventry (1981)

    Google Scholar 

  23. de Cooman, G., Troffaes, M.C.M., Miranda, E.: n-Monotone exact functionals. Journal of Mathematical Analysis and Applications 347, 143–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Augustin, T.: Generalized basic probability assignments. International Journal of General Systems 4, 451–463 (2005)

    Article  MathSciNet  Google Scholar 

  25. Denoeux, T.: Reasoning with imprecise belief structures. International Journal of Approximate Reasoning 20, 79–111 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Fagin, R., Halpern, J.Y.: Uncertainty, belief, and probability. In: Computational Intelligence, pp. 1161–1167. Morgan Kaufmann (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miranda, E., Destercke, S. (2013). Extreme Points of the Credal Sets Generated by Elementary Comparative Probabilities. In: van der Gaag, L.C. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2013. Lecture Notes in Computer Science(), vol 7958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39091-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39091-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39090-6

  • Online ISBN: 978-3-642-39091-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics