Abstract
Probabilistic logic programming languages are powerful formalisms that can model complex problems where it is necessary to represent both structure and uncertainty. Using exact inference methods to compute conditional probabilities in these languages is often intractable so approximate inference techniques are necessary. This paper proposes a Markov Chain Monte Carlo algorithm for estimating conditional probabilities based on sampling from an AND/OR tree for ProbLog, a general-purpose probabilistic logic programming language. We propose a parameterizable proposal distribution that generates the next sample in the Markov chain by probabilistically traversing the AND/OR tree from its root, which holds the evidence, to the leaves. An empirical evaluation on several different applications illustrates the advantages of our algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Machine Learning 50 (2003)
De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic Prolog and its application in link discovery. In: IJCAI, pp. 2462–2467 (2007)
Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.: Inference in probabilistic logic programs using weighted CNF’s. In: UAI (2011)
Gogate, V., Dechter, R.: AND/OR importance sampling. In: UAI (2008)
Gogate, V., Domingos, P.: Probabilistic theorem proving. CoRR, abs/1202.3724 (2012)
Goodman, N., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: UAI, pp. 220–229 (2008)
Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical J. 29, 147 (1950)
Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)
Karp, R.M., Luby, M.: Monte-carlo algorithms for enumeration and reliability problems. In: FOCS, pp. 56–64. IEEE Computer Society (1983)
Kersting, K., De Raedt, L.: Bayesian logic programs. CoRR, cs.AI/0111058 (2001)
Kimmig, A.: A Probabilistic Prolog and its Applications. PhD thesis, Informatics Section, Department of Computer Science, KU Leuven, Belgium (November 2010)
Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming 11, 235–262 (2011)
Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., Nath, A., Domingos, P.: The alchemy system for statistical relational AI. Technical report, Dept. of Computer Science and Engineering, U. of Washington, WA (2010)
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machine. Journal of Chemical Physics 21, 1087–1091 (1953)
Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: Probabilistic models with unknown objects. In: IJCAI, pp. 1352–1359 (2005)
Park, J.D.: Using weighted MAX-SAT engines to solve MPE. In: AAAI/IAAI, pp. 682–687. AAAI Press, Menlo Park (2002)
Pfeffer, A.: IBAL: A probabilistic rational programming language. In: IJCAI (2001)
Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1-2), 7–56 (1997)
Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: ICLP, pp. 715–729. MIT Press (1995)
Sato, T.: A general MCMC method for bayesian inference in logic-based probabilistic modeling. In: IJCAI, pp. 1472–1477. IJCAI/AAAI (2011)
Sato, T., Kameya, Y.: PRISM: A language for symbolic-statistical modeling. In: IJCAI, pp. 1330–1339 (1997)
Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8, 410–421 (1979)
Wingate, D., Stuhlmüller, A., Goodman, N.D.: Lightweight implementations of probabilistic programming languages via transformational compilation. Journal of Machine Learning Research - Proceedings Track 15, 770–778 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moldovan, B., Thon, I., Davis, J., de Raedt, L. (2013). MCMC Estimation of Conditional Probabilities in Probabilistic Programming Languages. In: van der Gaag, L.C. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2013. Lecture Notes in Computer Science(), vol 7958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39091-3_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-39091-3_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39090-6
Online ISBN: 978-3-642-39091-3
eBook Packages: Computer ScienceComputer Science (R0)