Abstract
A recent trend in the field of biometrics is the use of Electrocardiographic (ECG) signals. One of the main challenges of this new paradigm is the development of non-intrusive and highly usable setups. Fingers and hand palms for example, allow the ECG acquisition at much more convenient locations than the chest, commonly used for clinical scenarios. These new locations lead to an ECG signal with lower signal to noise ratio, and more prone to noise artifacts. In this paper, we propose an outlier removal system to eliminate noisy segments, and enhance the performance of non-intrusive ECG biometric systems. Preliminary results show that this system leads to an improvement on the recognition rates, helping to further validate the potential of ECG signals as complementary biometric modality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biel, L., Petterson, O., Phillipson, L., Wide, P.: ECG analysis: A new approach in human identification. IEEE Trans. Inst. and Measurement 50(3), 808–812 (2001)
Kyoso, M., Uchiyama, A.: Development of an ECG identification system. In: Proc. 23rd Int. Conf. IEEE Eng. Medicine and Biology Society, vol. 4 (2001)
Wang, Y., Agrafioti, F., Hatzinakos, D., Plataniotis, K.N.: Analysis of human electrocardiogram for biometric recognition. EURASIP J. Adv. S. Processing (2008)
Odinaka, I., Lai, P.H., Kaplan, A., O’Sullivan, J., Sirevaag, E., Rohrbaugh, J.: ECG biometric recognition: A comparative analysis. IEEE Trans. on Information Forensics and Security 7(6), 1812–1824 (2012)
Silva, H., Gamboa, H., Fred, A.: One lead ECG based personal identification with feature subspace ensembles. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 770–783. Springer, Heidelberg (2007)
Shen, T.: Biometric Identity Verification Based on Electrocardiogram. PhD thesis, University of Wisconsin (2005)
Israel, S., Irvine, J., Cheng, A., Wiederhold, M., Wiederhold, B.: ECG to identify individuals. Pattern Recognition 38(1), 133–142 (2005)
Coutinho, D.P., Fred, A.L.N., Figueiredo, M.A.T.: String matching approach for ECG-based biometrics. In: 16th Portuguese Conf. Pattern Recognition (2010)
Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. on Instrumentation and Measurement 57(2), 248–253 (2008)
Silva, H., Lourenço, A., Fred, A.: In-vehicle driver recognition based on hand ECG signals. In: Proc. of the IUI 2012 Conf. IUI (2012)
Lourenço, A., Silva, H., Fred, A.: Unveiling the biometric potential of Finger-Based ECG signals. Computational Intelligence and Neuroscience (2011)
Cunha, J., Cunha, B., Xavier, W., Ferreira, N., Pereira, A.: Vital-Jacket: A wearable wireless vital signs monitor for patients’ mobility. In: Proceedings of the Avantex Symposium (2007)
Gamboa, H., Silva, F., Silva, H.: Patient tracking system. In: 4th Int Conf on Pervasive Computing Technologies for Healthcare, pp. 1–2 (March 2010)
Silva, H., Lourenço, A., Lourenço, R., Leite, P., Coutinho, D., Fred, A.: Study and evaluation of a single differential sensor design based on electro-textile electrodes for ECG biometrics applications. In: Proc. IEEE Sensors, Ireland (2011)
Lourenço, A., Silva, H., Leite, P., Lourenço, R., Fred, A.: Real time electrocardiogram segmentation for finger based ECG biometric. In: Proc. of BIOSIGNALS 2012, pp. 49–54 (February 2012)
Uludag, U., Ross, A., Jain, A.: Biometric template selection and update: a case study in fingerprints. Pattern Recognition 37(7), 1533–1542 (2004)
Lumini, A., Nanni, L.: A clustering method for automatic biometric template selection. Pattern Recognition 39(3), 495–497 (2006)
Tax, D., Duin, R.: Outliers and data descriptions. In: Proc. 7th Annual Conf. Advanced School for Computing and Imaging, ASCI (2001)
Zhang, Y., Meratnia, N., Havinga, P.J.M.: A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets. Technical Report TR-CTIT-07-79, Centre Tel. and Inf. Tec. Univ. of Twente (November 2007)
Chandola, V., Banerjee, A., Kumar, V.: Outlier detection: A survey. ACM Computing Surveys (2007)
Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22 (2004)
Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall (1988)
Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. ACM SIGMOD, 37–46 (2001)
Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining. In: Proc. 20th Int. Conf. on Very Large Data Bases, VLDB 1994, pp. 144–155. Morgan Kaufmann Publishers Inc., San Francisco (1994)
Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of 2nd Int. Conf. on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press (1996)
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In: Applications of Data Mining in Computer Security. Kluwer (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lourenço, A., Silva, H., Carreiras, C., Fred, A. (2013). Outlier Detection in Non-intrusive ECG Biometric System. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-39094-4_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39093-7
Online ISBN: 978-3-642-39094-4
eBook Packages: Computer ScienceComputer Science (R0)