Skip to main content

Analysis of the SoftKinetic DepthSense for Range Imaging

  • Conference paper
Image Analysis and Recognition (ICIAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7950))

Included in the following conference series:

Abstract

We analyse the SoftKinetic DepthSense 325 range imaging camera for precision and accuracy in ranging out to 3 m. Flat planar targets (one a grey board, the other made from retroreflective material) are imaged at a variety of distances. Straight-forward image processing is used to identify the target and calculate the range and the root mean square variation in ranging to the target. It is found that inaccuracies in ranging of up to 2 cm occur to the grey board when imaging over 0 m to 1.5 m and the precision in ranging degrades from just below 1 cm at 0 m to almost 10 cm at 1.5 m. Similar inaccuracies occur with the retroreflective target but the precision is always under 1 cm even out to 3 m due to the strong signal return received from the target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, N., Borgeat, A.: 3D camera calibration. Tech. rep., Albert-Ludwigs-University, Frieburg, Germany (2010)

    Google Scholar 

  2. Buttgen, B., Seitz, P.: Robust optical time-of-flight range imaging based on smart pixel sensors. IEEE Trans. Circ. Sys. I Reg. Papers 55, 1512–1525 (2008)

    Article  MathSciNet  Google Scholar 

  3. Conroy, R.M., Dorrington, A.A., Künnemeyer, R., Cree, M.J.: Range imager performance comparison in homodyne and heterodyne operating modes. In: SPIE/IS&T Electronic Imaging Symposium: Three-Dimensional Imaging Metrology. Proc. SPIE, San Jose, CA, USA, vol. 7239, p. 723905 (2009)

    Google Scholar 

  4. Fuchs, S., May, S.: Calibration and registration for precise surface reconstruction with TOF cameras. Int. J. Intell. Syst. Technol. Appl. 5, 274–284 (2008)

    Google Scholar 

  5. Godbaz, J.P., Cree, M.J., Dorrington, A.A.: Understanding and ameliorating non-linear phase and amplitude responses in AMCW lidar. Rem. Sens. 4, 21–42 (2012)

    Article  Google Scholar 

  6. Kahlmann, T., Remondino, F., Ingensand, H.: Calibration for increased accuracy of the range imaging camera SwissRanger. In: Proceedings of ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, Dresden, Germany, pp. 25–27 (September 2006)

    Google Scholar 

  7. Lange, R.: 3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology. Ph.D. thesis, University of Siegen, Siegen, Germany (2000)

    Google Scholar 

  8. Lindner, M., Kolb, A.: Lateral and depth calibration of PMD-distance sensors. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 524–533. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Luan, X.: Experimental Investigation of Photonic Mixer Device and Development of TOF 3D Ranging Systems Based on PMD Technology. Ph.D. thesis, University of Siegen, Siegen, Germany (2001)

    Google Scholar 

  10. Payne, A.D., Dorrington, A.A., Cree, M.J.: Illumination waveform optimization for time-of-flight range imaging cameras. In: SPIE Optical Metrology, Videometrics, Range Imaging, and Applications. Proc. SPIE, Munich, Germany, vol. 8085 (2011)

    Google Scholar 

  11. Payne, A.D., Dorrington, A.A., Cree, M.J., Carnegie, D.A.: Characterizing an image intensifier in a full-field range imaging system. IEEE Sens. J. 8, 1763–1770 (2008)

    Article  Google Scholar 

  12. Payne, A.D., Dorrington, A.A., Cree, M.J., Carnegie, D.A.: Improved linearity using harmonic error rejection in a full-field range imaging system. In: IS&T/SPIE Symposium on Electronic Imaging: 3D Image Capture and Applications VII. Proc. SPIE, San Jose, CA, USA, vol. 6805, p. 68050D (2008)

    Google Scholar 

  13. Payne, A.D., Dorrington, A.A., Cree, M.J., Carnegie, D.A.: Characterization of modulated time-of-flight range image sensors. In: IS&T/SPIE Symposium on Electronic Imaging: Three-Dimensional Imaging Metrology. Proc. SPIE, San Jose, CA, USA, vol. 7239, p. 723904 (2009)

    Google Scholar 

  14. Payne, A.D., Jongenelen, A.P.P., Dorrington, A.A., Cree, M.J., Carnegie, D.A.: Multiple frequency range imaging to remove measurement ambiguity. In: Optical 3-D Measurement Techniques IX, vol. 2, pp. 139–148 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cree, M.J., Streeter, L.V., Conroy, R.M., Dorrington, A.A. (2013). Analysis of the SoftKinetic DepthSense for Range Imaging. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics