Abstract
We introduce several classes of semiquadratic copulas (i.e. copulas that are quadratic in at least one coordinate of any point of the unit square) of which the diagonal section or the opposite diagonal section are given functions. These copulas are constructed by quadratic interpolation on segments connecting the diagonal (resp. opposite diagonal) of the unit square to the boundaries of the unit square.We provide for each class the necessary and sufficient conditions on a diagonal (resp. opposite diagonal) function and two auxiliary real functions f and g to obtain a copula which has this diagonal (resp. opposite diagonal) function as diagonal (resp. opposite diagonal) section.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
De Baets, B., De Meyer, H., Mesiar, R.: Asymmetric semilinear copulas. Kybernetika 43, 221–233 (2007)
De Baets, B., De Meyer, H., Úbeda-Flores, M.: Opposite diagonal sections of quasi-copulas and copulas. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 17, 481–490 (2009)
De Baets, B., De Meyer, H., Úbeda-Flores, M.: Constructing copulas with given diagonal and opposite diagonal sections. Communications in Statistics: Theory and Methods 40, 828–843 (2011)
Durante, F., Jaworski, P.: Absolutely continuous copulas with given diagonal sections. Communications in Statistics: Theory and Methods 37, 2924–2942 (2008)
Durante, F., Kolesárová, A., Mesiar, R., Sempi, C.: Copulas with given diagonal sections, novel constructions and applications. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 15, 397–410 (2007)
Durante, F., Kolesárová, A., Mesiar, R., Sempi, C.: Semilinear copulas. Fuzzy Sets and Systems 159, 63–76 (2008)
Durante, F., Mesiar, R., Sempi, C.: On a family of copulas constructed from the diagonal section. Soft Computing 10, 490–494 (2006)
Jwaid, T., De Baets, B., De Meyer, H.: Orbital semilinear copulas. Kybernetika 45, 1012–1029 (2009)
Klement, E., Kolesárová, A.: Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators. Kybernetika 43, 329–348 (2005)
Nelsen, R.: An Introduction to Copulas. Springer, New York (2006)
Nelsen, R., Fredricks, G.: Diagonal copulas. In: Beneš, V., Štěpán, J. (eds.) Distributions with given Marginals and Moment Problems, pp. 121–127. Kluwer Academic Publishers, Dordrecht (1997)
Nelsen, R., Quesada-Molina, J., RodrÃguez-Lallena, J., Úbeda-Flores, M.: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance: Math. Econ. 42, 473–483 (2008)
Schmidt, R., Stadtmüller, U.: Non-parametric estimation of tail dependence. Scand. J. Statist. 33(2), 307–335 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jwaid, T., De Baets, B., De Meyer, H. (2013). On the Construction of Semiquadratic Copulas. In: Bustince, H., Fernandez, J., Mesiar, R., Calvo, T. (eds) Aggregation Functions in Theory and in Practise. Advances in Intelligent Systems and Computing, vol 228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39165-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-39165-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39164-4
Online ISBN: 978-3-642-39165-1
eBook Packages: EngineeringEngineering (R0)