Skip to main content

Towards a Practical Cryptographic Voting Scheme Based on Malleable Proofs

  • Conference paper
Book cover E-Voting and Identify (Vote-ID 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7985))

Included in the following conference series:

Abstract

Mixnets are one of the main approaches to deploy secret and verifiable electronic elections. General-purpose verifiable mixnets however suffer from the drawback that the amount of data to be verified by observers increases linearly with the number of involved mix nodes, the number of decryptors, and the number of voters. Chase et al. proposed a verifiable mixnet at Eurocrypt 2012 based on so-called malleable proofs - proofs that do not increase with the number of mix nodes. In work published at PKC 2013, the same authors adapted malleable proofs to verifiable distributed decryption, resulting in a cryptographic voting scheme. As a result, the amount of data to be verified only increases linearly with the number of voters. However, their scheme leaves several questions open which we address in this paper: As a first contribution, we adapt a multi-party computation protocol to build a distributed key generation protocol for the encryption scheme underlying their voting scheme. As a second contribution, we decompress their abstract scheme description, identify elementary operations, and count the number of such operations required for mixing and verification. Based on timings for elementary operations, we extrapolate the running times of the mixing and verification processes, allowing us to assess the feasibility of their scheme. For the German case, we conclude that the replacement of postal voting by cryptographic voting based on malleable proofs is feasible on an electoral district level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–90 (1981)

    Article  Google Scholar 

  2. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Wikström, D.: A commitment-consistent proof of a shuffle. Cryptology ePrint Archive, Report 2011/168 (2011), http://eprint.iacr.org/

  5. Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive Zero-Knowledge Shuffle Argument. IACR Cryptology ePrint Archive, 394 (2011)

    Google Scholar 

  6. Bayer, S., Groth, J.: Efficient Zero-Knowledge Argument for Correctness of a Shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable Proof Systems and Applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Verifiable Elections That Scale for Free. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 479–496. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Geisler, M., Smart, N.P.: Distributing the Key Distribution Centre in Sakai–Kasahara Based Systems. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 252–262. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. CertiVox: MIRACL Crypto SDK, https://certivox.com/solutions/miracl-crypto-sdk/ (accessed March 22, 2013)

  13. Fouque, P.A., Poupard, G., Stern, J.: Sharing Decryption in the Context of Voting or Lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cramer, R., Damgård, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Pedersen, T.: A Threshold Cryptosystem without a Trusted Party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  17. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation, an Introduction, http://www.cs.au.dk/~jbn/smc.pdf (accessed March 22, 2013)

  19. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, Edmonton, Alberta, Canada, August 14-16, pp. 201–209. ACM (1989)

    Google Scholar 

  20. Kate, A., Goldberg, I.: Asynchronous distributed private-key generators for identity-based cryptography. IACR Cryptology ePrint Archive, 355 (2009)

    Google Scholar 

  21. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Communications of the ACM 24, 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  22. Cohen, H., Frey, G. (eds.): Handbook of elliptic and hyperelliptic curve cryptography. CRC Press (2005)

    Google Scholar 

  23. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. European Network of Excellence in Cryptology II: Ecrypt II Yearly Report on Algorithms and Key Sizes, http://www.keylength.com/en/3 (accessed March 22, 2013)

  25. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai Proofs Revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Smart, N.P.: Personal communication

    Google Scholar 

  27. CertiVox: CertiVox Wiki, Benchmarks and Subs, https://wiki.certivox.com/display/EXT/Benchmarks+and+Subs (accessed March 22, 2013)

  28. Beuchat, J.L., Diaz, J.E.G., Mitsunari, S., Okamoto, E., Rodriguez-Henriquez, F., Teruya, T.: High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves. Cryptology ePrint Archive, Report 2010/354 (2010)

    Google Scholar 

  29. Mitsunari, S.: High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves, http://homepage1.nifty.com/herumi/crypt/ate-pairing.html (accessed March 22, 2013)

  30. Der Bundeswahlleiter: Pressemitteilung (February 16, 2009)

    Google Scholar 

  31. Citizens Registration Office, D.E.M.N.: Personal communication

    Google Scholar 

  32. Smart, N.P.: Personal communication

    Google Scholar 

  33. Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical Covertly Secure MPC for Dishonest Majority — or: Breaking the SPDZ Limits. Cryptology ePrint Archive, Report 2012/642 (2012)

    Google Scholar 

  34. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.: Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 218–235. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  35. Knuth, D.: The Art of Computer Programming, vol. 4A. Addison-Wesley Professional (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernhard, D., Neumann, S., Volkamer, M. (2013). Towards a Practical Cryptographic Voting Scheme Based on Malleable Proofs. In: Heather, J., Schneider, S., Teague, V. (eds) E-Voting and Identify. Vote-ID 2013. Lecture Notes in Computer Science, vol 7985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39185-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39185-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39184-2

  • Online ISBN: 978-3-642-39185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics