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Abstract

We consider the EXACT-WEIGHT-H problem of finding a (not necessarily induced) subgraph H of
weight 0 in an edge-weighted graph G. We show that for every H , the complexity of this problem is
strongly related to that of the infamous k-SUM problem. In particular, we show that under the k-SUM
Conjecture, we can achieve tight upper and lower bounds for the EXACT-WEIGHT-H problem for various
subgraphs H such as matching, star, path, and cycle.

One interesting consequence is that improving on theO(n3) upper bound for EXACT-WEIGHT-4-PATH
or EXACT-WEIGHT-5-PATH will imply improved algorithms for 3-SUM, 5-SUM, ALL-PAIRS SHORTEST PATHS
and other fundamental problems. This is in sharp contrast to the minimum-weight and (unweighted) detec-
tion versions, which can be solved easily in timeO(n2). We also show that a faster algorithm for any of the
following three problems would yield faster algorithms for the others: 3-SUM, EXACT-WEIGHT-3-MATCHING,
and EXACT-WEIGHT-3-STAR.

1 Introduction

Two fundamental problems that have been extensively studied separately by different research communities
for many years are the k-SUM problem and the problem of finding subgraphs of a certain form in a graph.
We investigate the relationships between these problems and show tight connections between k-SUM and
the “exact-weight” version of the subgraph finding problem.

The k-SUM problem is the parameterized version of the well known NP-complete problem SUBSET-SUM,
and it asks if in a set of n integers, there is a subset of size k whose integers sum to 0. This problem can be
solved easily in time O(ndk/2e), and Baran, Demaine, and Pǎtraşcu [3] show how the 3-SUM problem can
be solved in timeO(n2/ log2 n) using certain hashing techniques. However, it has been a longstanding open
problem to solve k-SUM for some k in time O(ndk/2e−ε) for some ε > 0. In certain restricted models of
computation, an Ω(ndk/2e) lower bound has been established initially by Erickson [7] and later generalized
by Ailon and Chazelle [1], and recently, Pǎtraşcu and Williams [16] show that no(k) time algorithms for all
k would refute the Exponential Time Hypothesis. The literature seems to suggest the following hypothesis,
which we call the k-SUM Conjecture:

Conjecture 1 (The k-SUM Conjecture). There does not exist a k ≥ 2, an ε > 0, and a randomized algorithm
that succeeds (with high probability) in solving k-SUM in time O(nd

k
2e−ε).

The presumed difficulty of solving k-SUM in time O(ndk/2e−ε) for any ε > 0 has been the basis of
many conditional lower bounds for problems in computational geometry. The k = 3 case has re ceived even
more attention, and proving 3-SUM-hardness has become common practice in the computational geometry
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literature. In a recent line of work, Pǎtraşcu [15], Vassilevska and Williams [17], and Jafargholi and Viola
[11] show conditional hardness based on 3-SUM for problems in data structures and triangle problems in
graphs.

The problem of determining whether a weighted or unweighted n-node graph has a subgraph that is
isomorphic to a fixed k node graph H with some properties has been well-studied in the past [14, 12, 6].
There has been much work on detection and counting copies of H in graphs, the problem of listing all
such copies of H , finding the minimum-weight copy of H , etc. [17, 13]. Considering these problems for
restricted types of subgraphsH has received further attention, such as for subgraphsH with large indepedent
sets, or with bounded treewidth, and various other structures [17, 18, 13, 8]. In this work, we focus on the
following subgraph finding problem.

Definition 1 (The EXACT-WEIGHT-H Problem). Given an edge-weighted graph G, does there exist a (not
necessarily induced) subgraph isomorphic to H such that the sum of its edge weights equals a given target
value t?1

No non-trivial algorithms were known for this problem. Theoretical evidence for the hardness of this
problem was given in [17], where the authors prove that for any H of size k, an algorithm for the exact-
weight problem can give an algorithm for the minimum-weight problem with an overhead that is only
O(2k · logM), when the weights of the edges are integers in the range [−M,M ]. They also show that
improving on the trivial O(n3) upper bound for EXACT-WEIGHT-3-CLIQUE to O(n3−ε) for any ε > 0
would not only imply an Õ(n3−ε) algorithm2 for the minimum-weight 3-CLIQUE problem, which from [19]
is in turn known to imply faster algorithms for the canonical ALL-PAIRS SHORTEST PATHS problem, but
also an O(n2−ε

′
) upper bound for the 3-SUM problem, for some ε′ > 0. They give additional evidence for

the hardness of the exact-weight problem by proving that faster than trivial algorithms for the k-CLIQUE

problem will break certain cryptographic assumptions.
Aside from the aforementioned reduction from 3-SUM to EXACT-WEIGHT-3-CLIQUE, few other con-

nections between k-SUM and subgraph problems were known. The standard reduction from Downey and
Fellows [5] gives a way to reduce the unweighted k-CLIQUE detection problem to

(
k
2

)
-SUM on n2 numbers.

Also, in [15] and [11], strong connections were shown between the 3-SUM problem (or, the similar 3-XOR

problem) and listing triangles in unweighted graphs.

1.1 Our Results

In this work, we study the exact-weight subgraph problem and its connections to k-SUM. We show three
types of reductions: k-SUM to subgraph problems, subgraphs to other subgraphs, and subgraphs to k-SUM.
These results give conditional lower bounds that can be viewed as showing hardness either for k-SUM or
for the subgraph problems. We focus on showing implications of the k-SUM Conjecture and therefore view
the first two kinds as a source for conditional lower bounds for EXACT-WEIGHT-H , while we view the last
kind as algorithms for solving the problem. Our results are summarized in Table 1 and Figure 1, and are
discussed below.

Hardness. By embedding the numbers of the k-SUM problem into the edge weights of the exact-weight
subgraph problem, using different encodings depending on the structure of the subgraph, we prove four
reductions that are summarized in Theorem 2:

1We can assume, without loss of generality, that the target value is always 0 and that H has no isolated vertices.
2In our bounds, k is treated as a constant. The notation Õ(f(n)) will hide polylog(n) factors.
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Theorem 2. Let k ≥ 3. If for all ε > 0, k-SUM cannot be solved in time O(ndk/2e−ε), then none of the
following problems3 can be solved in time O(ndk/2e−δ), for any δ > 0:

• EXACT-WEIGHT-H on a graph on n nodes, for any subgraph H on k nodes.

• EXACT-WEIGHT-k-MATCHING on a graph on
√
n nodes.

• EXACT-WEIGHT-k-STAR on a graph on n(1−1/k) nodes.

• EXACT-WEIGHT-(k-1)-PATH on a graph on n nodes.

An immediate implication of Theorem 2 is that neither 3-STAR can be solved in time O(n3−ε), nor can
3-MATCHING be solved in time O(n4−ε) for some ε > 0, unless 3-SUM can be solved in time O(n2−ε

′
)

for some ε′ > 0. We later show that an O(n2−ε) algorithm for 3-SUM for some ε > 0 will imply both an
Õ(n3−ε) algorithm for 3-STAR and an Õ(n4−2ε) algorithm for 3-MATCHING. In other words, either all of
the following three statements are true, or none of them are:

• 3-SUM can be solved in time O(n2−ε) for some ε > 0.

• 3-STAR can be solved in time O(n3−ε) for some ε > 0.

• 3-MATCHING can be solved in time O(n4−ε) for some ε > 0.

From [17], we already know that solving 3-CLIQUE in time O(n3−ε) for some ε > 0 implies that
3-SUM can be solved in time O(n2−ε) for some ε > 0. By Theorem 2, this would imply faster algorithms
for 3-STAR and 3-MATCHING as well.

Another corollary of Theorem 2 is the fact that 4-PATH cannot be solved in timeO(n3−ε) for some ε > 0
unless 5-SUM can be solved in time O(n3−ε

′
) for some ε′ > 0. This is in sharp contrast to the unweighted

version (and the min-weight version) of 4-PATH, which can both be solved easily in time O(n2).
Theorem 2 shows that the k-SUM problem can be reduced to the EXACT-WEIGHT-H problem for vari-

ous types of subgraphs H , and as we noted, this implies connections between the exact-weight problem for
different subgraphs. It is natural to ask if for any other subgraphs the exact-weight problems can be related
to one another. We will answer this question in the affirmative—in particular, we show a tight reduction
from 3-CLIQUE to 4-PATH.

To get this result, we use the edge weights to encode information about the nodes in order to prove a re-
duction from EXACT-WEIGHT-H1 to EXACT-WEIGHT-H2, whereH1 is what we refer to as a “vertex-minor”
of H2. Informally, a vertex-minor of a graph is one that is obtained by edge deletions and node identifica-
tions (contractions) for arbitrary pairs of nodes of the original graph (see Section 4 for a formal definition).
For example, the triangle subgraph is a vertex-minor of the path on four nodes, which is itself a vertex-minor
of the cycle on four nodes.

Theorem 3. LetH1, H2 be subgraphs such thatH1 is a vertex-minor ofH2. For anyα ≥ 2, if EXACT-WEIGHT-H2

can be solved in time O(nα), then EXACT-WEIGHT-H1 can be solved in time Õ(nα).

Therefore, Theorem 3 allows us to conclude that 4-CYCLE cannot be solved in time O(n3−ε) for some
ε > 0 unless 4-PATH can be solved in time Õ(n3−ε), which cannot happen unless 3-CLIQUE can be solved
in time Õ(n3−ε).

To complete the picture of relations between 3-edge subgraphs, consider the subgraph composed of a
2-edge path along with another (disconnected) edge. We call this the “VI” subgraph and we define the

3k-MATCHING denotes the k-edge matching on 2k nodes. k-STAR denotes the k-edge star on k+ 1 nodes. k-PATH denotes the
k-node path on k-1 edges.
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EXACT-WEIGHT-VI problem appropriately. Since the path on four nodes is a vertex-minor of VI, we
have that an O(n3−ε) for some ε > 0 algorithm for EXACT-WEIGHT-VI implies an Õ(n3−ε) algorithm
for 4-PATH. In Figure 1, we show this web of connections between the exact-weight 3-edge subgraph
problems and its connection to 3-SUM, 5-SUM, and ALL-PAIRS SHORTEST PATHS. In fact, we will soon
see that the conditional lower bounds we have established for these 3-edge subgraph problems are all tight.
Note that the detection and minimum-weight versions of some of these 3-edge subgraph problems can all
be solved much faster than O(n3) (in particular, O(n2)), and yet such an algorithm for the exact-weight
versions for any of these problems will refute the 3-SUM Conjecture, the 5-SUM Conjecture, and lead to
breakthrough improvements in algorithms for solving ALL-PAIRS SHORTEST PATHS and other important
graph and matrix optimization problems (cf. [19])!

Another O(n3) solvable problem is the EXACT-WEIGHT-5-PATH, and by noting that both 4-CYCLE and
VI are vertex-minors of 5-PATH, we get that improved algorithms for 5-PATH will yield faster algorithms
for all of the above problems. Moreover, from Theorem 2, 6-SUM reduces to 5-PATH. This established
EXACT-WEIGHT-5-PATH as the “hardest” of the O(n3) time problems that we consider.

We also note that Theorem 3 yields some interesting consequences under the assumption that the
k-CLIQUE problem cannot be solved in time O(nk−ε) for some ε > 0. Theoretical evidence for this
assumption was provided in [17], where they show how an O(nk−ε) for some ε > 0 time algorithm for
EXACT-WEIGHT-k-CLIQUE yields a sub-exponential time algorithm for the multivariate quadratic equa-
tions problem, a problem whose hardness is assumed in post-quantum cryptography.

We note that the 4-clique is a vertex-minor of the 8-node path, and so by Theorem 3, an O(n4−ε) for
some ε > 0 algorithm for 8-PATH will yield a faster 4-CLIQUE algorithm. Note that an O(n5−ε) algorithm
for 8-PATH already refutes the 9-SUM Conjecture. However, this by itself is not known to imply faster
clique algorithms4. Also, there are other subgraphs for which one can only rule out O(ndk/2e−ε) for ε > 0
upper bounds from the k-SUM Conjecture, while assuming hardness for the k-CLIQUE problem and using
Theorem 3, much stronger lower bounds can be achieved.

Algorithms. So far, our reductions only show one direction of the relationship between k-SUM and the
exact-weight subgraph problems. We now show how to use k-SUM to solve EXACT-WEIGHT-H , which will
imply that many of our previous reductions are indeed tight. The technique for finding an H-subgraph is to
enumerate over a set of d smaller subgraphs that partition H in a certain way. Then, in order to determine
whether the weights of these d smaller subgraphs sum up to the target weight, we use d-SUM. We say that
(S,H1, . . . ,Hd) is a d-separator of H iff S,H1, . . . ,Hd partition V (H) and there are no edges between a
vertex in Hi and a vertex in Hj for any distinct i, j ∈ [d].

Theorem 4. Let (S,H1, . . . ,Hd) be a d-separator of H . Then, EXACT-WEIGHT-H can be reduced to
Õ(n|S|) instances of d-SUM each on max{n|H1|, . . . , n|Hd|} numbers.

By using the known d-SUM algorithms, Theorem 4 gives a non-trivial algorithm for exact-weight sub-
graph problems. The running time of the algorithm depends on the choice of the separator used for the
reduction. We observe that the optimal running time can be achieved even when d = 2, and can be identi-
fied (naively, in time O(3k)) using the following expression. Let

γ(H) = min
(S,H1,H2) is a 2-separator

{|S|+ max {|H1|, |H2|}} .

Corollary 5. EXACT-WEIGHT-H can be solved in time Õ(nγ(H)).

4It is not known whether the assumption that k-CLIQUE cannot be solved in time O(nk−ε) for any ε > 0 is stronger or weaker
than the k-SUM Conjecture.
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EW-3-clique

EW-3-star

EW-3-matching

EW-VI

EW-4-path

All-Pairs Shortest Paths

3-sum

5-sum

(n3)

(n3)

(n3)

(n3)

(n3)

(n4)

(n2)

MW-3-clique

(n3)(n3)

EW-4-cycle

(n3)

EW-5-path

(n3)

6-sum

(n3)

Figure 1: A diagram of the relationships between EXACT-WEIGHT-H (denoted EW , for small subgraphs
H) and other important problems. The best known running times are given for each problem, and an arrow
A → B denotes that A can be tightly reduced to B, in the sense that improving the stated running time for
B will imply an improvement on the stated running time for A. The reductions established in this work are
displayed in bold, the others are due to [19], [17].

Corollary 5 yields the upper bounds that we claim in Figure 1 and Table 1. For example, to achieve the
O(nd(k+1)/2e) time complexity for k-PATH, observe that we can choose the set containing just the “middle”
node of the path to be S, so that the graph H \ S is split into two disconnected halves H1 and H2, each
of size at most d(k − 1)/2e. Note that this is the optimal choice of a separator, and so γ(k-PATH) = 1 +
d(k − 1)/2e = d(k + 1)/2e. It is interesting to note that this simple algorithm achieves running times that
match many of our conditional lower bounds. This means that in many cases, improving on this algorithm
will refute the k-SUM Conjecture, and in fact, we are not aware of any subgraph for which a better running
time is known.

EXACT-WEIGHT-H is solved most efficiently by our algorithm when γ(H) is small, that is, subgraphs
with small “balanced” separators. Two such cases are when H has a large independent set and when H has
bounded treewidth. We show that EXACT-WEIGHT-H can be solved in time O(nk−b

s
2c), if α(H) = s, and

in time O(n
2
3
·k+tw(H)). Also, we observe that our algorithm can be modified slightly to get an algorithm

for the minimization problem.

Theorem 6. Let H be a subgraph on k nodes, with independent set of size s. Given a graph G on n nodes
with node and edge weights, the minimum total weight of a (not necessarily induced) subgraph of G that is
isomorphic to H can be found in time Õ(nk−s+1).

This algorithm improves on the O(nk−s+2) time algorithm of Vassilevska and Williams [17] for the
MIN-WEIGHT-H problem.

Organization. We give formal definitions and preliminary reductions in Section 2. In Section 3 we present
reductions from k-SUM to exact-weight subgraph problems that prove Theorem 2. In Section 4 we define
vertex-minors and prove Theorem 3. In Section 5, we give reductions to k-SUM and prove Theorems 4
and 6.
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Subgraph Exact Lower Bound Condition Detection Min

3-CLIQUE n3 n3 3-SUM, APSP nω [10] n3

4-PATH n3 n3 3-CLIQUE, 5-SUM n2 n2

k-MATCHING n2·d
k
2 e n2·d

k
2 e k-SUM n2 n2

k-STAR nd
k
2 e+1

nd
k+1
2 e (k+1)-SUM

n n2
nd

k
2 e· k

k−1 k-SUM

k-PATH nd
k+1
2 e nd

k+1
2 e k-SUM n2 n2

k-CYCLE nd
k
2 e+1 nd

k+1
2 e k-PATH n2 n3

Any nk
ndk/2e k-SUM

nωk/3 [12] nk
nεk (ETH)

α(H) = s nk−b s
2c nd

k
2 e k-SUM nk−s+1 [13] nk−s+1 [Thm. 4]

tw(H) = w n
2
3k+w nd

k
2 e k-SUM nw+1 [2] n2w [8]

k-SUM nd
k
2 e nd

k
2 e k-MATCHING, k-STAR - -

Table 1: The results shown in this work for EXACT-WEIGHT-H for various H . The second column has the
upper bound achieved by our algorithm from Corollary 5. Improvements on the lower bound in the third
column will imply improvements on the best known algorithms for the problems in the condition column.
These lower bounds are obtained by our redctions, except for the first row which was proved in [17]. For
comparison, we give the running times for the (unweighted) detection and minimum-weight versions of the
subgraph problems. The last row shows our conditional lower bounds for k-SUM. α(H) represents the
independence number of H , tw(H) is its treewidth. The results for the “Any” row hold for all subgraphs on
k nodes. ETH stands for the Exponential Time Hypothesis.

2 Preliminaries and Basic Constructions

For a graph G, we will use V (G) to represent the set of vertices and E(G) to represent the set of edges. The
notation N(v) will be used to represent the neighborhood of a vertex v ∈ V (G).

2.1 Reducibility

We will use the following notion of reducibility between two problems. In weighted graph problems where
the weights are integers in [−M,M ], n will refer to the number of nodes times logM . For k-SUM problems
where the input integers are in [−M,M ], n will refer to the number of integers times logM . In Appendix A
we formally define our notion of reducibility, which follows the definition of subcubic reductions in [19].
Informally, for any two decision problems A and B, we say that A ≤a b B if for any ε > 0, there exists a
δ > 0 such that if B can be solved (w.h.p.) in time nb−ε, then A can be solved (w.h.p.) in time O(na−δ),
where n is the size of the input. Note that polylog(n) factor improvements in solving B may not imply any
improvements in solving A. Also, we say that A ≡a b B if and only if A ≤a b B and B ≤b a A.

2.2 The k-SUM Problem

Throughout the paper, it will be more convenient to work with a version of the k-SUM problem that is more
structured than the basic formulation. This version is usually referred to as either TABLE-k-SUM or k-SUM′,
and is known to be equivalent to the basic formulation, up to kk factors (by a simple extension of Theorem
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3.1 in [9]). For convenience, and since f(k) factors are ignored in our running times, we will refer to this
problem as k-SUM.

Definition 2 (k-SUM). Given k lists L1, . . . , Lk each with n numbers where Li = {xi,j}j∈[n] ⊆ Z, do there
exist k numbers x1,a1 , . . . , xk,ak , one from each list, such that

∑k
i=1 xi,ai = 0?

In our proofs, we always denote an instance of k-SUM by L1, . . . , Lk, where Li = {xi,j}j∈[n] ⊆ Z, so
that xi,j is the jth number of the ith list Li. We define a k-solution to be a set of k numbers {xi,ai}i∈[k], one
from each list. The sum of a k-solution {xi,ai}i∈[k] will be defined naturally as

∑k
i=1 xi,ai .

In [15], Pǎtraşcu defines the CONVOLUTION-3-SUM problem. We consider a natural extension of this
problem.

Definition 3 (CONVOLUTION-k-SUM). Given k listsL1, . . . , Lk each with n numbers, whereLi = {xi,j}j∈[n] ⊆
Z, does there exist a k-solution {xi,ai}i∈[k] such that ak = a1 + · · ·+ ak−1 and

∑k
i=1 xi,ai = 0?

Theorem 10 in [15] shows that 3-SUM ≤2 2 CONVOLUTION-3-SUM. By generalizing the proof, we show
the following useful lemma (see proof in Appendix C).

Lemma 7. For all k ≥ 2, k-SUM ≤dk/2e dk/2e CONVOLUTION-k-SUM.

2.3 H-Partite Graphs

Let H be a subgraph on k nodes with V (H) = {h1, . . . , hk}.

Definition 4 (H-partite graph). LetG be a graph such that V (G) can be partitioned into k setsPh1 , . . . , Phk ,
each containing n vertices. We will refer to these k sets as the super-nodes of G. A pair of super-nodes
(Phi , Phj ) will be called a super-edge if (hi, hj) ∈ E(H). Then, we say that G is H-partite if every edge in
E(G) lies in some super-edge of G.

We denote the set of vertices of an H-partite graph G by V (G) = {vi,j}i∈[k],j∈[n], where vi,j is the jth

vertex in super-node Phi . We will say that G is the complete H-partite graph when (vi,a, vj,b) ∈ E(G) if
and only if (Phi , Phj ) is a super-edge of G, for all a, b ∈ [n].

An H-subgraph of an H-partite graph G, denoted by χ = {vi,ai}i∈[k] ⊆ V (G), is a set of vertices for
which there is exactly one vertex vi,ai from each super-node Phi , where ai is an index in [n]. Given a weight
function w : (V (G) ∪ E(G)) → Z for the nodes and edges of G, the total weight of the subgraph χ is
defined naturally as

w(χ) =
∑

hi∈V (H)

w(vi,ai) +
∑

(hi,hj)∈E(H)

w(vi,ai , vj,aj ).

Figure 2 illustrates our definitions and notations of H-partite graphs and H-subgraphs.
Now, we define a more structured version of the EXACT-WEIGHT-H problem which is easier to work

with.

Definition 5 (The EXACT-H Problem). Given a complete H-partite graph graph G with a weight function
w : (V (G) ∪ E(G))→ Z for the nodes and edges, does there exist an H-subgraph of total weight 0?

In appendix B, we prove the following lemma, showing that the two versions of the EXACT-WEIGHT-H
problem are reducible to one another in a tight manner. All of our proofs will use the formulation of
EXACT-H , yet the results will also apply to EXACT-WEIGHT-H . Note that our definitions of H-partite
graphs uses ideas similar to color-coding [2].

Lemma 8. Let α > 1. EXACT-WEIGHT-H ≡α α EXACT-H .
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h1

h2 h3

h4

(a) A subgraph H

Ph4

Ph2 Ph3

Ph1

v1,3

v3,1

v2,4

v4,3

(b) An H-partite graph G

Figure 2: A subgraph H along with an H-partite graph G. We associate a partition Phi ⊆ V (G) with each
node hi ∈ V (H). The vertex vi,j ∈ V (G) represents the jth node in partition Phi in G. Note that the set
{v1,3, v2,4, v3,1, v4,3} is an H-subgraph in G. Also, since there are no edges between a vertex in Ph3 and a
vertex in Ph4 , G is a valid H-partite graph.

3 Reductions from k-SUM to Subgraph Problems

In this section we prove Theorem 2 by proving four reductions, each of these reductions uses a somewhat
different way to encode k-SUM in the structure of the subgraph. First, we give a generic reduction from
k-SUM to EXACT-H for an arbitrary H on k nodes. We set the node weights of the graph to be the numbers
in the k-SUM instance, in a certain way.

Lemma 9 (k-SUM ≤dk/2e dk/2e EXACT-H). LetH be a subgraph with k nodes. Then, k-SUM on n numbers
can be reduced to a single instance of EXACT-H on kn vertices.

Proof. Let H be a subgraph with node set {h1, . . . , hk}. Given a k-SUM instance of k lists L1, . . . , Lk,
where each Li = {xi,j}j∈[n], we create a complete H-partite graph G on kn vertices where we associate
each super-node Phi with a list Li, and the jth vertex in the super-node vi,j with the number xi,j ∈ Li. To
do this, we set all edge weights to be 0, and for every i ∈ [k], j ∈ [n], we set w(vi,j) = xi,j . Now, for any
H-subgraph χ = {vi,ai}i∈[k] of G, the total weight of χ will be exactly

∑k
i=1 xi,ai , which is the sum of the

k-solution {xi,ai}i∈[k]. For the other direction, for any k-solution {xi,ai}i∈[k], the H-subgraph {vi,ai}i∈[k]
of G has weight exactly

∑k
i=1 xi,ai . Therefore, there is a k-solution of sum 0 iff there is an H-subgraph in

G of total weight 0.

We utilize the edge weights of the graph, rather than the node weights, to prove a tight reduction to
k-MATCHING.

Lemma 10 (k-SUM ≤dk/2e 2·dk/2e EXACT-k-MATCHING). Let H be the k-MATCHING subgraph. Then,
k-SUM on n numbers can be reduced to a single instance of EXACT-H on k

√
n vertices.

Proof. Given k lists L1, . . . , Lk each with n numbers, we will construct a complete H-partite graph G
on k
√
n vertices, where there will be super-edges (Ph2i−1

, Ph2i) for each i ∈ [k], each with n edges over√
n vertices. We place each number in Li on an arbitrary edge within the ith super-edge of G by setting

w(v2i−1,a, v2i,b) = xi,(a·
√
n+b) for all a, b ∈ [

√
n]. Now, note that the H-subgraph {vi,ai}i∈[2k] of G has

weight
∑k

i=1 xi,bi , where bi = a2i−1 ·
√
n+a2i. This is precisely the sum of the k-solution {xi,bi}i∈[k]. And,

8



for every k-solution {xi,bi}i∈[k], if we choose a2i−1 = bbi/
√
nc and a2i = bi − a2i−1

√
n, the H-subgraph

{vi,ai}i∈[2k] has weight
∑k

i=1 xi,bi . Therefore, there is a k-solution of sum 0 iff there is an H-subgraph in
G of total weight 0.

Another special type of subgraph which can be shown to be tightly related to the k-SUM problem is the
k-edge star subgraph. We define the k-STAR subgraph H to be such that V (H) = {h1, . . . , hk, hk+1} and
E(H) = {(h1, hk+1), (h2, hk+1), . . . , (hk, hk+1)}, so that hk+1 is the center node.

Lemma 11 (k-SUM ≤d k2e d k2e· k
k−1

EXACT-k-STAR). Let H be the k-STAR subgraph, and let α > 2. If

EXACT-H can be solved in O(nα) time, then k-SUM can be solved in Õ(n(1−1/k)·α) time.

Proof. To prove the lemma we define the problem k-SUMn to be the following. Given a sequence of n
k-SUM instances, each on n numbers, does there exist an instance in the sequence that has a solution of sum
0? Then, we prove two claims, one showing a reduction from k-SUMn to EXACT-k-STAR, and the other
showing a self-reduction for k-SUM that relates it to k-SUMn.

Claim 12. Let H be the k-STAR subgraph. k-SUMn can be reduced to the EXACT-H problem on a graph
of n nodes.

Proof. Given a k-SUMn instance, denote the ith k-SUM instance in the sequence as L(i)
1 , . . . , L

(i)
k , where

the jth list of the ith instance is L(i)
j = {x(i)j,`}`∈[n] ⊆ Z. We create anH-partite graphG on kn nodes, where

we associate the ith vertex in super-node Phk+1
(vertex vk+1,i), with the ith instance of the sequence, and

we assign the n numbers of list L(i)
j to the n edges incident to vk+1,i within the super-edge (Phj , Phk+1

).

This can be done by setting, for every i ∈ [n], j ∈ [k], ` ∈ [n], w(vk+1,i, vj,`) = x
(i)
j,`, and the weight of

every vertex in G to 0.
Assume there is an H-subgraph χ = {vj,aj}j∈[k+1] in G of total weight 0. Let i = ak+1, and consider

the k-solution for the ith instance {x(i)j,aj}j∈[k]. Note that its sum is exactly the total weight of the H-

subgraph χ, which is 0. For the other direction, assume the ith instance has a k-solution {x(i)j,aj}j∈[k] of sum
0, and define the H-subgraph χ = {vj,aj}j∈[k+1], where ak+1 = i. Again, note that the total weight of χ is

exactly
∑k

j=1 x
(i)
j,aj

= 0.

Claim 13. Let k ≥ 2, and α ≥ 2. If k-SUMn can be solved in O(nα) time, then k-SUM can be solved in
Õ(nα·

k−1
k ) time.

Proof. We will use the hashing scheme due to Dietzfelbinger [4] that we described and used in Appendix C,
to hash the numbers into buckets. Given a k-SUM instance L1, . . . , Lk, our reduction is as follows:

1. Repeat the following c · kk · log n times.

(a) Pick a hash function h ∈ HM,t, for t, and map each number xi,j to bucket Bi,h(xi,j).

(b) Ignore all numbers mapped to “overloaded” buckets.

(c) Now each bucket has at most N = kn/t = k · n
k−1
k numbers. We will generate a sequence of

k · tk−1 = k · n
k−1
k = N instances of k-SUM, each on N numbers, such that one of them has a

solution iff the original k-SUM input has a solution. This sequence will be the input to k-SUMN :
Go over all tk−1 choices of k− 1 buckets, B1,a1 , . . . , Bk−1,ak−1

, and add k instances of k to the
sequence, one for each of the k buckets, Bk,a(1) , . . . , Bk,a(k) , for which the last number in the
solution might be in.
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First note that if the k-SUM had a solution, it’s numbers will be mapped into not “overloaded” buckets in
one of the iterations, with probability 1−O(n−c). Then, in such case, the reduction will succeed due to the
“almost linearity” property of the hashing. Now, to conclude the proof of the claim, assume k-SUMN can
be solved in time O(Nα), and observe that using the reduction one gets an algorithm for n-SUM running in
time Õ(Nα) = Õ(nα·

k−1
k ), as claimed.

Our final reduction between k-SUM and EXACT-H for a class of subgraphsH is as follows. First, define
the k-PATH subgraphH to be such that V (H) = {h1, . . . , hk} andE(H) = {(h1, h2), (h2, h3), . . . , (hk−1, hk)}.

Lemma 14 (k-SUM ≤d k2e d k2e
EXACT-(k-1)-PATH). Let H be the k-PATH subgraph. If EXACT-H can be

solved in time O(ndk/2e−ε) for some ε > 0, then k+1-SUM can be solved in time O(ndk/2e−ε
′
), for some

ε′ > 0.

Proof. We prove that an instance of CONVOLUTION-(k+1)-SUM on n numbers can be reduced to a sin-
gle instance of EXACT-k-PATH, and by applying Lemma 7, this completes the proof. Given k + 1 lists
L1, . . . , Lk+1 each with n numbers as the input to CONVOLUTION-(k+1)-SUM, we will construct a com-
plete H-partite graph G on kn nodes. For every r and s such that r− s ∈ [n], for all i ∈ [k], define the edge
weights of G in the following manner.

w(vi,r, vi+1,s) =


x1,r + x2,s−r, if i = 1

xi+1,s−r, if 1 < i < k

xk,s−r + xk+1,s, if i = k

Otherwise, if r − s 6∈ [n], we set w(vi,r, vi+1,s) = −∞ for all i ∈ [k]. Now to see the correctness
of the reduction, take any H-subgraph {vi,ai}i∈[k] of G, and consider the (k + 1)-solution {xi,bi}i∈[k+1],
where b1 = a1, bk+1 = ak, and for 2 ≤ i ≤ k, bi = ai − ai−1. First, note that the (k + 1)-solution
satisfies the property that b1 + . . .+ bk = bk+1. Now, note that its total weight is

∑k
i=1w(vi,ai , vi+1,ai+1) =

x1,a1 + x2,a2−a1 + x3,a3−a2 + . . .+ xk−1,ak−1−ak−2
+ xk,ak−ak−1

+ xk+1,ak =
∑k+1

i=1 xi,bi which is exactly
the sum of the (k+1)-solution. For the other direction, consider the (k+1)-solution {xi,bi}i∈[k+1] for which
bk+1 = b1 + . . . + bk+1. Then, the H-subgraph {vi,ai}i∈[k], where ai = b1 + . . . + bi, has total weight∑k+1

i=1 xi,bi . Therefore, there is a k-solution of sum 0 iff there is an H-subgraph in G of total weight 0.

4 Relationships Between Subgraphs

In this section we prove Theorem 3 showing that EXACT-H1 can be reduced to EXACT-H2 if H1 is a
vertex-minor of H2. Then we give an additional observation that gives a reverse reduction. We start by
defining vertex-minors.

Definition 6 (Vertex-Minor). A graph H1 is called a vertex-minor of graph H2, and denoted H1 ≤vm H2

, if there exists a sequence of subgraphs H(1), . . . ,H(`) such that H1 = H(1), H2 = H(`), and for every
i ∈ [`− 1], H(i) can be obtained from H(i+1) by either

• Deleting a single edge e ∈ E(H(i+1)), or

10



• Contracting two nodes5 hj , hk ∈ V (H(i+1)) to one node hjk ∈ V (H(i)), such that N(hjk) =
N(hj) ∪N(hk).

To prove Theorem 3 it suffices to show how to reduce EXACT-H1 to EXACT-H2 whenH1 is obtained by
either a single edge deletion or a single vertex contraction. The edge deletion reduction is straightforward,
and the major part of the proof will be showing the contraction reduction. The main observation is that we
can make two copies of nodes and change their node weights in a way such that any H2-subgraph of total
weight 0 that contains one of the copies will have to contain the other. This will allow us to claim that the
subgraph obtained by replacing the two copies of a node with the original will be an H1-subgraph of total
weight 0.

Lemma 15. Let H be a subgraph you get after deleting an edge from H ′. EXACT-H on kn nodes can be
reduced to a single instance of EXACT-H ′ on kn nodes.

Proof. Without loss of generality, denote V (H) = V (H ′) = {h1, . . . , hk}, E(H ′) = {e1, . . . , em}, where
em = (hk−1, hk), and E(H) = {e1, . . . , em−1}.

Given G, an H-partite graph as input to EXACT-H , we create an H ′-partite graph G′ which will have
the same set of nodes as G, but will have an additional super-edge (hk−1, hk) where all of the edges within
this super-edge will have weight 0. In other words, for all a, b ∈ [n] define w(v(k−1),a, vk,b) = 0. Now,
every H-subgraph in G is an H ′-subgraph in G′ with the same total weight, and vice versa, which proves
the correctness of the reduction.

Lemma 16. Let H be a subgraph you get after contracting two nodes from H ′. EXACT-H on (k + 1)n
nodes can be reduced to a single instance of EXACT-H ′ on kn nodes.

Proof. Without loss of generality, denote V (H ′) = {h1, . . . , hk−1}∪{hk(1) , hk(2)}, V (H) = {h1, . . . , hk−1}∪
{hk}, and assume you get H from H ′ by contracting the nodes hk(1) , hk(2) ∈ V (H ′) into the node hk ∈
V (H). Given G, an H-partite graph, we create an H ′-partite graph G′ which will be almost the same as G,
except that every vertex vk,a in the kth partition of G will have two copies in G′, one in Ph

k(1)
and one in

Ph
k(2)

, which we call vk(1),a and vk(2),a, respectively. The weights in G′ will be the same as in G, but we
will add a unique integer ua for a ∈ [n] to the weight of vk(1),a and subtract ua from the weight of vk(2),a.
This will ensure that in any H ′-subgraph of total weight 0, if vk(1),a is picked, then vk(2),a must also be
picked. This allows us to conclude that any H ′-subgraph of total weight 0 in G′ will directly correspond to
an H-subgraph in G.

Let d = |E(H)| = |E(H ′)|,W the maximum weight of any edge or node inG, andK = (d+k+1)·W .
Create a complete H ′-partite graph G′, and define the edge weights w′ : (E(G′) ∪ V (G′))→ Z as follows.
For every super-edge (hi, hk̂) where k̂ ∈ {k(1), k(2)}, define w′(vi,a, vk̂,b) = w(vi,a, vk,b). All other edges
(vi,a, vj,b) ∈ E(H ′) will have weightw′(vi,a, vj,b) = w(vi,a, vj,b). For the vertices, we will setw′(vk(1),a) =
a ·K and w′(vk(2),a) = −a ·K for all a ∈ [n]. All other vertices will have weight 0.

Let χ = {vi,ai}i∈[k−1] ∪ {vk(1),a
k(1)

, vk(2),a
k(2)
} be an H ′-subgraph of G′ of total weight 0. First, we

claim that ak(1) = ak(2) . This is true because the total weight of the subgraph χ is (ak(1) − ak(2)) ·K +X ,
where X represents the sum of d edges and k nodes, each of weight at most W . Therefore, X < (d +
k + 1) ·W = K, which implies that (ak(1) − ak(2)) · K + X = 0 can happen only if ak(1) − ak(2) = 0.
Second, note that the H-subgraph {vi,ai}i∈[k] of G, where ak = ak(1) = ak(2) , will also have total weight
0. This is because the numbers added to the weights of the nodes vk(1),a

k(1)
and vk(1),a

k(1)
cancel out, and

all of the other weights involved are defined to be the same as in G. Now for the other direction, note that
5The difference between our definition of vertex-minor and the usual definition of a graph minor is that we allow contracting

two nodes that are not necessarily connected by an edge.
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for any H-subgraph {vi,ai}i∈[k] in G, the H ′-subgraph {vi,ai}i∈[k−1] ∪ {vk(1),a
k(1)

, vk(2),a
k(2)
} in G′, where

ak(1) = ak(2) = ak, will have the same total weight. Therefore, there is an H ′-subgraph of total weight 0 in
G′ if and only if there is an H-subgraph of total weight 0 in G.

Theorem 3 follows from these two lemmas, by the transitive property of our reducibility definition.

4.1 Reverse Direction

Next we give an observation which shows how EXACT-H2 can be reduced to EXACT-H1, whereH2 contains
H1 as an induced subgraph. This can be seen as a reversal of Theorem 3, since H2 is a larger graph.

Proposition 17. Let H2 be the subgraph you get by adding a node to H1 that has edges to every node in
H1, and let α ≥ 2. Then, EXACT-H2 ≤α+1 α EXACT-H1 .

Proof. Without loss of generality denote V (H ′) = {h1, . . . , hk}, V (H) = {h1, . . . , hk, hk+1} andE(H) =
E(H ′)∪{(hi, hk+1)}ki=1. That is, hk+1 is the new node, and it’s connected with edges to all the other nodes.

To solve EXACT-H on a complete H-partite graph G on (k + 1) · n nodes, we will create n instances
of EXACT-H ′, one for every vertex vk+1,a in the super-node Phk+1

. The instance will have a solution if and
only if there is an H-subgraph in G of total weight 0 that has node vk+1,a in it:

For every a ∈ [n], create an H ′-partite graph G′a that will be the same as G on all super-nodes and all
super-edges that do not involve hk+1, but will have the following additional weights: For every i ∈ [k] and
b ∈ [n], we will add the weight of the edge (vi,b, vk+1,a) in G, to the weight of node vi,b in G′.

Now observe that every H ′-subgraph in G′a, {vi,ai}i∈[k] will have exactly the same weight as the H-
subgraph of G which is {vi,ai}i∈[k+1], where ak+1 = a. And therefore, there is an H ′-subgraph in G′a of
total weight 0, if and only if there is an H-subgraph of G which has the vertex vk+1,a and has weight 0.

5 Reductions to k-SUM (and Upper Bounds)

In this section we show how k-SUM can be used to solve exact-weight subgraph problems. First, we
show how the standard reduction from clique detection to k-SUM can be generalized to relate k-SUM to
exact-weight subgraph problems. However, this reduction does not give non-trivial implications for most
subgraphs. Then, we show how to use a 2-SUM algorithm to solve EXACT-H for any subgraph H . This
gives us a generic algorithm for solving EXACT-H , which we call the separator algorithm. Finally, we gen-
eralize this algorithm in a way that allows it to be phrased as a reduction from EXACT-H to d-SUM for any
d ≤ k − 1, where k = |V (H)|. The bounds achieved by the algorithms depend on the structure of H .

In [5], a reduction that maps an unweighted k-CLIQUE detection instance to a
(k
2

)
-SUM instance on n2

numbers is given in order to prove that k-SUM is W [1]-hard. The reduction maps each edge to a number
that encodes the two vertices that are adjacent to the edge in a way such that the numbers encoded in the
edges corresponding to a k-CLIQUE, when summed, cancel out to 0. In [11], the authors show how the same
idea can be applied to show that triangle detection can be reduced to 3-XOR on n2 vectors. We show that
EXACT-H can be reduced to d-SUM on n2 numbers, where d = |E(H)|.

Proposition 18. Let H be a subgraph on k nodes and d edges, and let α ≥ 2. Then, EXACT-H ≤2·α α

d-SUM. Moreover, the EXACT-H problem on graphs withm edges can be reduced to d-SUM onm numbers.

Proof. We give a simple proof that uses out techniques. First note that anyH with d edges is a vertex-minor
of the d-MATCHING subgraph, and therefore by Theorem 3, EXACT-H ≤α α EXACT-d-MATCHING, and
note that in our reduction, the sparsity of the graph is preserved. Then use Theorem 4 to reduce EXACT-d-MATCHING

to d-SUM, by choosing S = ∅ and Hi to be the two endpoints of the ith edge, and observe that we get a
d-SUM instance on m numbers.
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The Separator Algorithm. We will say that (S,H1, H2) is a separator of a graphH iff S,H1, H2 partition
V (H) and there are no edges between a vertex in H1 and a vertex in H2. The set of all separators of H will
be denoted as S(H). Consider the following algorithm to solve EXACT-H . We will call this algorithm the
separator algorithm. First, find

(S,H1, H2) = argmin(S′,H′1,H′2)∈S(H)(|S′|+ max(|H ′1|, |H ′2|))

by naively brute-forcing over all 3k possible choices for S, H1, and H2. Then, pick an S-subgraph χS =
{vi,ai}hi∈S . Construct a 2-SUM instance with target weight w(χS) and lists L1 and L2 constructed as
follows: For every H1-subgraph χH1 = {vi,ai}hi∈H1 , add w(χH1 ∪ χS) to L1. Similarly, for every H2-
subgraph χH2 = {vi,ai}hi∈H2 , add w(χH2 ∪ χS) to L2. We create an instance of 2-SUM for each possible
S-subgraph χS . The algorithm outputs that there is an H-subgraph of total weight 0 iff some 2-SUM

instance has a solution. The running time of this algorithm is O(3k + n|S| · (n|H1| + n|H2|)). We will call
γ(H) = |S|+ max(|H1|, |H2|).

To see that the separator algorithm solves EXACT-H in time O(nγ(H)), suppose there is an H-subgraph
{vi,ai}i∈[k] = {vi,ai}hi∈S∪{vi,ai}hi∈H1∪{vi,ai}hi∈H2 of weight 0. Then, the 2-SUM instance corresponding
to χS = {vi,ai}hi∈S will contain an integer w({vi,ai}hi∈H1 ∪ {vi,ai}hi∈S) ∈ L1 and w({vi,ai}hi∈H2 ∪
{vi,ai}hi∈S) ∈ L2.

Since S,H1, H2 partition V (H), we can write the sum of these two integers as

w({vi,ai}hi∈S ∪ {vi,ai}hi∈H1 ∪ {vi,ai}hi∈H2) + w({vi,ai}hi∈S).

Note that the term on the left is equal to w({vi,ai}hi∈V (H)), which by our assumption is 0. Thus, the sum of
these two integers is equal to the target, w({vi,ai}hi∈S).

For the other direction, let χS = {vi,ai}hi∈S be the corresponding S-subgraph to the 2-SUM instance
which has a solution of the form w({vi,ai}hi∈H1 ∪ {vi,ai}hi∈S) ∈ L1 and w({vi,ai}hi∈H2 ∪ {vi,ai}hi∈S) ∈
L2. Since S,H1, H2 partition V (H), we can write the sum of these two integers as:

w({vi,ai}hi∈H1 ∪ {vi,ai}hi∈S ∪ {vi,ai}hi∈H2) + w({vi,ai}hi∈S).

Since the target of the 2-SUM instance is w({vi,ai}hi∈S), we have that w({vi,ai}hi∈H1 ∪ {vi,ai}hi∈S ∪
{vi,ai}hi∈H2) = w({vi,ai}hi∈V (H)) = 0.

Remark 1. The separator algorithm is quite simple, yet we are not aware of any subgraph H for which
there is an algorithm that solves EXACT-H in time O(nγ(H)−ε), for some ε > 0. We have given examples
of subgraphs for which improving on the separator algorithm is known to imply that the k-SUM Conjecture
is false, and some for which this implication is not known.

Generalizing the Separator Algorithm. We can view the separator algorithm as an algorithm which finds
the optimal way to “break” H into two subgraphs H1 and H2, and enumerates all instances of H1 and H2

independently, and then solves 2-sum instances to combine the edge-disjoint subgraphs. One natural way
to generalize this algorithm is to consider what happens when we divide H into d subgraphs H1, . . . ,Hd.
Then, by a similar algorithm, one can use d-SUM to solve the EXACT-H problem. This generalization is of
interest due to the fact that it implies that faster d-SUM algorithms imply faster algorithms for EXACT-H .

We will say that (S,H1, . . . ,Hd) is a d-separator iff S,H1, . . . ,Hd partition V (H) and there are no
edges between a vertex in Hi and a vertex in Hj for any distinct i, j ∈ [1, d]. The set of all d-separators of
H will be denoted as Sd(H).

Reminder of Theorem 4: Let (S,H1, . . . ,Hd) be a d-separator of H . Then, EXACT-WEIGHT-H can be
reduced to Õ(n|S|) instances of d-SUM each on max{n|H1|, . . . , n|Hd|} numbers.
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Proof. [of Theorem 4] We can generalize the separator algorithm to hold for arbitrary d-separators. Pick
an S-subgraph χS = {vi,ai}hi∈S . Construct a d-SUM instance with target weight (d − 1) · w(χS) and
lists L1, . . . , Ld constructed as follows: For all j ∈ [d], for every Hj-subgraph χHj = {vi,ai}hi∈Hj

, add
w(χHj ∪ χS) to Lj . We create an instance of d-SUM for each possible S-subgraph χS . The algorithm
outputs that there is an H-subgraph of total weight 0 iff some d-SUM instance has a solution. The proof of
correctness for this reduction follows similarly to the proof of correctness for the separator algorithm. The
Õ(·) in the number of instances comes from the EXACT-WEIGHT-H ≤ EXACT-H reduction.

Corollary 19. Let H be a graph on k nodes and let I be an independent set of H where |I| = s. Then,
EXACT-H can be reduced to O(nk−s) instances of s-SUM on n integers.

Proof. Consider the separator (S,H1, . . . ,Hs), where S = V (H) \ I , and Hi is a singleton containing the
ith vertex in I .

Corollary 20. Let H be a graph on k nodes with treewidth bounded by tw. Then, EXACT-H can be solved
in time O(n

2
3
k+tw).

Proof. Observe that there will be a d-separator of size tw, for some d > 1, where each of the d disconnected
components has at most k/2 nodes, and therefore can be separated into two disconnected components with
at most 2k/3 nodes each. Thus, γ(H) ≤ 2k/3 + tw.

Remark 2. Note that under the current best known running times for k-SUM, the separator algorithm (of
Corollary 5) will always be at least as good as the algorithm one can get from Theorem 4. This is implied by
the fact that the fastest known way to solve k-SUM is by a reduction to 2-SUM. However, if it turns out that
there exists a k0 for which k0-SUM can be solved fast enough, the algorithm of Theorem 4 can be faster than
the separator algorithm. As an example, assume 3-SUM can be solved in linear time, and H is a subgraph
composed of 3 disconnected k/3-node cliques.

Now notice that if one wanted to find the minimum total weight of an H-subgraph in the input graph
G, the same procedure can be applied, with a slight modification that makes it more efficient. When going
over an S-subgraphs χS of G, instead of solving d-SUM on the d lists L1, . . . , Ld, it is enough to find the
minimum number in each list. Observe that the sum of these numbers, minus (d − 1) · w(χS), equals the
minimum total weight of an H-subgraph in G that uses the nodes in χS . Therefore, by going over all S-
subgraphs, and taking the minimum of these numbers, one gets the minimum total weight of anH-subgraph
in G. The running time of this modified procedure is O(n|S| · (n|H1| + · · ·+ n|Hd|)).

Reminder of Theorem 6: LetH be a subgraph on k nodes, with independent set of size s. Given a graphG
on n nodes with node and edge weights, the minimum total weight of a (not necessarily induced) subgraph
of G that is isomorphic to H can be found in time Õ(nk−s+1).

Proof. First, observe that by our proof of the reduction EXACT-WEIGHT-H ≤ EXACT-H in Appendix B,
an algorithm for the minimization problem that assumes the graph is H-partite yields an algorithm for
the original problem with the same running time, up to kk · poly log n factors. Then, use the procedure
mentioned above where (S,H1, . . . ,Hd) are as in the proof of Corollary 19, to solve the structured version
of the problem in time O(nk−s · n).
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6 Conclusions

We conclude with two interesting open questions:

1. Perhaps the simplest subgraph for which we cannot give tight lower and upper bounds is the 5-CYCLE

subgraph. Can we achieve O(n4−ε) for some ε > 0 without breaking the k-SUM Conjecture, or can
we prove that it is not possible?

2. Can we prove that EXACT-WEIGHT-4-PATH ≤3 3 EXACT-WEIGHT-3-STAR? This would show that
breaking the 3-SUM Conjecture will imply anO(n3−ε) for some ε > 0 algorithm for ALL-PAIRS SHORTEST PATHS.
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A Reducibility

Our definition of reducibility is a mild extension of the definition of sub cubic reducibility in [19](Definition
C.1). In weighted graph problems where the weights are integers in [−M,M ], n will refer to the number
of nodes times logM . For k-SUM problems where the input integers are in [−M,M ], n will refer to the
number of integers times logM .

Definition 7. Let A and B be two decision problems. We say that A ≤a b B, if there is an algorithm A with
oracle access to B, such that for every ε > 0 there is a δ > 0 satisfying three properties:

• For every instance x of A, A solves the problem A on x probability 1− o(1).

• A runs in time O(na−δ) time on instances of size n.

• For every instance x of A of size n, let ni be the size of the ith oracle access to B in A(x). Then∑
i n

b−ε
i ≤ na−δ.

The proofs of Propositions 1 and 2 in [19], prove that this definition has the following two properties
that we will use:

• Let A,B,C be problems so that A ≤a b B and B ≤b c C, then A ≤a c C.

• If A ≤a b B then an O(nb−ε) algorithm for B for some ε > 0, implies an O(na−δ) algorithm for A
for some δ > 0, that succeeds with probability 1− o(1).

B Proof of Lemma 8

Claim 21. EXACT-H ≤α α EXACT-WEIGHT-H .
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Proof. Let G = {vi,ai}i∈[k] be an H-partite graph with weight function w : V (G) ∪ E(G)→ Z and target
weight 0. In this proof, we will construct a new weight function w∗ : E(G) → Z and a target t ∈ Z such
thatG,H , w∗, and tmake up an instance of EXACT-WEIGHT-H . We will build w∗ in the following manner.
Let W be the maximum weight of a node or edge in the graph, and let d = W · |E(H)|. First, initialize
w∗(vi,a, vj,b) = w(vi,a, vj,b) for all edges in G. Then, let (Pha , Phb) be the zth super-edge of H . For each
edge (vi,a, vj,b), we add the integer dz to w∗(vi,a, vj,b). Now, for each i ∈ [n], pick an arbitrary j ∈ [n] such
that (hi, hj) ∈ E(H), and add w(vi,a) to w∗(vi,a, vj,b) for all a, b ∈ [n]. We set the target t =

∑d
i=1 d

i.
To prove correctness, let χ = {vi,ai}i∈[k] be an H-subgraph of G of total weight 0. Since each

super-edge of G is used exactly once by χ, it follows that the sum of the edges of χ will have total weight
t under weight function w∗. For the reverse direction, let S = {vi}i∈[k] be a subgraph isomorphic to H
whose edge weights sum to t under weight function w∗. Then, each vi must lie in a distinct super-node
of G, for otherwise, if the jth super-node is unoccupied, then the total weight of S cannot possibly sum to
t. Now, relabel the vertices of S as {vi,ai}i∈[k]. Then, the total weight of S under w∗ can be expressed as∑

hi∈V (H)w(vi,ai) +
∑

(hi,hj)∈E(H)w(vi,ai , vj,aj ) + t. Therefore, we conclude that the sum of the weights
of the nodes and edges of S is 0, as desired.

Claim 22. EXACT-WEIGHT-H ≤α α EXACT-H .

Proof. We will use a simple color coding trick to ensure that the reduction succeeds with probability 1/kk.
This procedure can be derandomized using standard techniques.

Let G∗ be the graph of an instance of EXACT-WEIGHT-H . We construct an H-partite graph G in the
following manner. For each vertex vi ∈ V (G), we will pick a random j ∈ [k] and put vi in super-node Phj .
In other words, we maintain the structure of the graph while partitioning the vertices into k parts. This can
also be seen analogously as color-coding the vertices using k colors. The graph G (along with the original
weight function) is now an instance of EXACT-H .

For correctness, note that if G contains an H-subgraph χ, then χ is an isomorphic copy of H in G∗

with probability 1. For the other direction, we will show that with probability at least 1/kk, a set of vertices
χ = {vi}i∈[k] from G∗ will form an H-subgraph in G. For each vertex vi, there is a 1/k probability that it
is assigned to partition Phi . Thus, with probability 1/kk, this event holds for all vi for i ∈ [k], and so χ is
an H-subgraph of G. To translate this into a reduction, we simply repeat this randomized procedure O(kk)
times.

C Proof of Lemma 7

Proof. Assume CONVOLUTION-k-SUM can be solved in time O(nd
k
2e−ε), for some ε > 0. We follow the

outline of the proof of Theorem 10 in [15] to give an O(nd
k
2e−ε′) time algorithm for k-SUM.

We use a hashing scheme due to Dietzfelbinger [4] to hash the numbers of the n-SUM instance to t
buckets. In [4], a simple hash family HM,t is given, such that if one picks a function h : [M ] → [t] at
random fromHM,t, and maps each number xi.j ∈ Li to bucket Bi,h(xi,j), the following will hold:

• (Good load balancing) W.h.p. only O(kt) numbers will be mapped to “overloaded” buckets, that is,
buckets with more than kn/t numbers. Moreover, each number will be hashed to an “overloaded”
bucket with o(1) probability.

• (Almost linearity) For any k−1 bucketsB1,a1 , . . . , Bk−1,ak−1
, and any k−1 numbers y1 ∈ B1,a1 , . . . , yk−1 ∈

Bk−1,ak−1
, the number z = −(y1 + · · ·+ yk−1) can only be mapped to one of certain k buckets (w.p.

1): Bk,a(1) , . . . , Bk,a(k) , where w.l.o.g. we can assume that a(1) =
∑k−1

i=1 ai, and for 1 < i ≤ k,
a(i) = a(i−1) + 1.
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Given a k-SUM instance L1, . . . , Lk, our reduction is as follows:

1. Repeat the following c · kk · log n times.

(a) Pick a hash function h ∈ HM,t, for t to be set later, and map each number xi,j to bucketBi,h(xi,j).

(b) Ignore all numbers mapped to “overloaded” buckets.

(c) Now each bucket has at mostR = kn/t numbers. We create k·Rk instances of CONVOLUTION-k-SUM,
one for every choice of numbers (i1, . . . , ik) ∈ [R]k and a number 0 ≤ y < k, where in each in-
stance, the lists will contain only t numbers. These instances will test all k-solutions that might
lead to a solution. For a fixed (i1, . . . , ik) ∈ [R]k and 0 ≤ y < k, we create k lists L′1, . . . , L

′
k as

input for CONVOLUTION-k-SUM, where for every j ∈ [k − 1], x′j,a ∈ L′j will be set to the ij-th
number of bucket Bj,a of Lj , while x′k,a ∈ L′k will be set to the ik-th number of bucket Bk,a+y
of Lk.

To see the correctness of the reduction, assume there was a solution to the k-SUM problem, {xj,aj}j∈[k],
and note that with probability 1−O(n−c), there will be an iteration for which these numbers are not mapped
to “overloaded” buckets. Now let h be the hash function in a good iteration, a =

∑k−1
j=1 h(xj,aj ), and y be

such that h(xk,ak) = a + y. Note that by the “almost linearity” property, such y ∈ [k] must exist. Now let
(i1, . . . , ik) ∈ [R]k be such that for every j ∈ [k − 1], xj,aj is the ij-th element in bucket Bj,h(xj,aj ) of Lj ,
while xk,ak is the ik-th element in bucket Bk,a+y. Now consider the CONVOLUTION-k-SUM instance that
we get for these (i1, . . . , ik) and y, and consider the k-solution {x′j,h(xj,aj )}j∈[k−1] ∪ {x

′
k,h(xk,ak )−y

}. Its

sum will be exactly
∑

j∈[k] xj,aj , since x′j,h(xj,aj )
will be set to xi.aj , for every j ∈ [k]. And it will satisfy

the convolution property, since
∑k−1

j=1 h(xj,aj ) = a = h(xk,ak)− y. For the other direction, any k-solution
in any convolution problem is a legitimate k-solution in the original k-SUM problem with the same sum.
Therefore, with probability 1−o(nc), there is a solution iff one of the CONVOLUTION-k-SUM instances has
a solution.

The total running time of the reduction is Õ(t · nd
k−1
2 e + (n/t)d

k
2e−ε). Now set t = nε, and note that

when k is odd, the first term is insignificant, to get a running time of Õ(n(1−ε)·(d
k
2e−ε)) = Õ(nd

k
2e−ε′), for

some ε′ > 0.
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