Abstract
We consider the Exact-Weight-H problem of finding a (not necessarily induced) subgraph H of weight 0 in an edge-weighted graph G. We show that for every H, the complexity of this problem is strongly related to that of the infamous k-sum problem. In particular, we show that under the k-sum Conjecture, we can achieve tight upper and lower bounds for the Exact-Weight-H problem for various subgraphs H such as matching, star, path, and cycle.
One interesting consequence is that improving on the O(n 3) upper bound for Exact-Weight-4-path or Exact-Weight-5-path will imply improved algorithms for 3-sum, 5-sum, All-Pairs Shortest Paths and other fundamental problems. This is in sharp contrast to the minimum-weight and (unweighted) detection versions, which can be solved easily in time O(n 2). We also show that a faster algorithm for any of the following three problems would yield faster algorithms for the others: 3-sum, Exact-Weight-3-matching, and Exact-Weight-3-star.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ailon, N., Chazelle, B.: Lower bounds for linear degeneracy testing. J. ACM 52(2), 157–171 (2005)
Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic algorithms for 3SUM. Algorithmica 50(4), 584–596 (2008); In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 409–421. Springer, Heidelberg (2005)
Dietzfelbinger, M.: Universal hashing and k-wise independent random variables via integer arithmetic without primes. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 569–580. Springer, Heidelberg (1996)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness ii: On completeness for w[1] (1995)
Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. Theor. Comput. Sci. 326(1-3), 57–67 (2004)
Erickson, J.: Lower bounds for linear satisfiability problems. In: Clarkson, K.L. (ed.) SODA, pp. 388–395. ACM/SIAM (1995)
Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Raghavendra Rao, B.V.: Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci. 78(3), 698–706 (2012)
Gajentaan, A., Overmars, M.H.: On a class of o(n 2) problems in computational geometry. Computational Geometry 5(3), 165–185 (1995)
Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. In: STOC 1977, pp. 1–10. ACM, New York (1977)
Jafargholi, Z., Viola, E.: 3sum, 3xor, triangles. Electronic Colloquium on Computational Complexity (ECCC) 20, 9 (2013)
Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Inf. Process. Lett. 74(3-4), 115–121 (2000)
Kowaluk, M., Lingas, A., Lundell, E.-M.: Counting and detecting small subgraphs via equations and matrix multiplication. In: SODA 2011, pp. 1468–1476. SIAM (2011)
Neetil, J., Poljak, S.: On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae 026(2), 415–419 (1985)
Pǎtraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Proc. 42nd ACM Symposium on Theory of Computing (STOC), pp. 603–610 (2010)
Pǎtraşcu, M., Williams, R.: On the possibility of faster sat algorithms. In: Proc. 21st ACM/SIAM Symposium on Discrete Algorithms (SODA), pp. 1065–1075 (2010)
Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In: Mitzenmacher, M. (ed.) STOC, pp. 455–464. ACM (2009)
Williams, R.: Finding paths of length k in o*(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)
Williams, V.V., Williams, R.: Subcubic equivalences between path, matrix and triangle problems. In: FOCS, pp. 645–654. IEEE Computer Society (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abboud, A., Lewi, K. (2013). Exact Weight Subgraphs and the k-Sum Conjecture. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)