Skip to main content

How Hard Is Counting Triangles in the Streaming Model?

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

  • 1755 Accesses

Abstract

The problem of (approximately) counting the number of triangles in a graph is one of the basic problems in graph theory. In this paper we study the problem in the streaming model. Specifically, the amount of memory required by a randomized algorithm to solve this problem. In case the algorithm is allowed one pass over the stream, we present a best possible lower bound of Ω(m) for graphs G with m edges. If a constant number of passes is allowed, we show a lower bound of Ω(m/T), T the number of triangles. We match, in some sense, this lower bound with a 2-pass O(m/T 1/3)-memory algorithm that solves the problem of distinguishing graphs with no triangles from graphs with at least T triangles. We present a new graph parameter ρ(G) – the triangle density, and conjecture that the space complexity of the triangles problem is Θ(m/ρ(G)). We match this by a second algorithm that solves the distinguishing problem using O(m/ρ(G))-memory.

The full version of this paper is available at http://arxiv.org/abs/1304.1458

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: Proceedings of the 28th STOC, pp. 20–29 (1996)

    Google Scholar 

  2. Alon, M., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17, 209–223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proceedings of the 13th SODA, pp. 623–632 (2002)

    Google Scholar 

  4. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for local triangle counting in massive graphs. In: Proceeding of the 14th ACM International Conference on Knowledge Discovery and Data Mining, pp. 16–24 (2008)

    Google Scholar 

  5. Buriol, L., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting triangles in data streams. In: Proceedings of the Twenty-Fifth ACM Symposium on Principles of database Systems, pp. 253–262 (2006)

    Google Scholar 

  6. Chakrabarti, A., Cormode, G., Ranganath, K., McGregor, A.: Information Cost Tradeoffs for Augmented Index and Streaming Language Recognition. In: Proceedings of the 51st FOCS, pp. 387–396 (2010)

    Google Scholar 

  7. Eckmann, J., Moses, E.: Curvature of co-links uncovers hidden thematic layers in the world wide web. PNAS 99, 5825–5829 (2002)

    Article  MathSciNet  Google Scholar 

  8. Frank, O., Strauss, D.: Markov graphs. Journal of the American Statistical Association 81, 832–842 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Janson, S., Luczak, T., and Ruciński, A.: Random Graphs. Wiley (2000)

    Google Scholar 

  10. Jowhari, H., Ghodsi, M.: New streaming algorithms for counting triangles in graphs. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 710–716. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kolountzakis, M., Miller, G., Peng, R., Tsourakakis, C.: Efficient Triangle Counting in Large Graphs via Degree-Based Vertex Partitioning. Internet Mathematics 8, 161–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: Proceeding of the 14th ACM International Conference on Knowledge Discovery and Data Mining, pp. 462–470 (2008)

    Google Scholar 

  13. Rinaldo, A., Fienberg, S., Zhou, Y.: On the geometry of discrete exponential families with application to exponential random graph models. Electronic Journal of Statistics 3, 446–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsourakakis, C., Drineas, P., Michelakis, E., Koutis, I., Faloutsos, C.: Spectral counting of triangles via element-wise sparsification and triangle-based link recommendation. Social Network Analysis and Mining 1, 75–81 (2011)

    Article  Google Scholar 

  15. Tsourakakis, C., Kang, U., Miller, G., Faloutsos, C.: DOULION: counting triangles in massive graphs with a coin. In: Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining, pp. 837–846 (2009)

    Google Scholar 

  16. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (2004)

    Google Scholar 

  17. Vassilevska-Williams, V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the 44th STOC, pp. 887–898 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braverman, V., Ostrovsky, R., Vilenchik, D. (2013). How Hard Is Counting Triangles in the Streaming Model?. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics