Skip to main content

A Robust Khintchine Inequality, and Algorithms for Computing Optimal Constants in Fourier Analysis and High-Dimensional Geometry

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

This paper makes two contributions towards determining some well-studied optimal constants in Fourier analysis of Boolean functions and high-dimensional geometry.

  1. 1

    It has been known since 1994 [GL94] that every linear threshold function has squared Fourier mass at least 1/2 on its degree-0 and degree-1 coefficients. Denote the minimum such Fourier mass by W  ≤ 1[LTF], where the minimum is taken over all n-variable linear threshold functions and all n ≥ 0. Benjamini, Kalai and Schramm [BKS99] have conjectured that the true value of W  ≤ 1[LTF] is 2/π. We make progress on this conjecture by proving that W  ≤ 1[LTF] ≥ 1/2 + c for some absolute constant c > 0. The key ingredient in our proof is a “robust” version of the well-known Khintchine inequality in functional analysis, which we believe may be of independent interest.

  2. 2

    We give an algorithm with the following property: given any η > 0, the algorithm runs in time 2poly(1/η) and determines the value of W  ≤ 1[LTF] up to an additive error of ±η. We give a similar 2poly(1/η)-time algorithm to determine Tomaszewski’s constant to within an additive error of ±η; this is the minimum (over all origin-centered hyperplanes H) fraction of points in { − 1,1}n that lie within Euclidean distance 1 of H. Tomaszewski’s constant is conjectured to be 1/2; lower bounds on it have been given by Holzman and Kleitman [HK92] and independently by Ben-Tal, Nemirovski and Roos [BTNR02]. Our algorithms combine tools from anti-concentration of sums of independent random variables, Fourier analysis, and Hermite analysis of linear threshold functions.

A full version of this paper may be found at http://arxiv.org/abs/1207.2229

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Huang, H., Sudakov, B.: Nonnegative k-sums, fractional covers, and probability of small deviations. J. Combin. Theory, Series B 102(3), 784–796 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bentkus, V., Dzindzalieta, D.: A tight Gaussian bound for weighted sums of Rademacher random variables. Technical report (2012) (preprint)

    Google Scholar 

  3. Ben-David, S., Dichterman, E.: Learning with restricted focus of attention. Journal of Computer and System Sciences 56(3), 277–298 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bentkus, V.: On Hoeffding’s Inequality. Annals of Probability 32, 1650–1673 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90, 5–43 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A., Roos, C.: Robust Solutions of Uncertain Quadratic and Conic-Quadratic Problems. SIAM J. Optimization 13(2), 535–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. De, A., Diakonikolas, I., Feldman, V., Servedio, R.: Near-optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces. In: Proc. 44th ACM Symposium on Theory of Computing (STOC), pp. 729–746 (2012)

    Google Scholar 

  8. Diakonikolas, I., Gopalan, P., Jaiswal, R., Servedio, R., Viola, E.: Bounded independence fools halfspaces. SIAM J. on Comput. 39(8), 3441–3462 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diakonikolas, I., Servedio, R.: Improved approximation of linear threshold functions. In: Proc. 24th CCC, pp. 161–172 (2009)

    Google Scholar 

  10. Filmus, Y.: Khintchine-Kahane using Fourier Analysis (2012), Posted at http://www.cs.toronto.edu/~yuvalf/KK.pdf

  11. Gotsman, C., Linial, N.: Spectral properties of threshold functions. Combinatorica 14(1), 35–50 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guy, R.K.: Any answers anent these analytical enigmas? American Math. Monthly 93, 279–281 (1986)

    Article  MathSciNet  Google Scholar 

  13. Haagerup, U.: The best constants in the Khintchine inequality. Studia Math. 70, 231–283 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Holzman, R., Kleitman, D.J.: On the product of sign vectors and unit vectors. Combinatorica 12(3), 303–316 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hitczenko, P., Kwapień, S.: On the Rademacher series. In: Probability in Banach Spaces, pp. 31–36 (1994)

    Google Scholar 

  16. He, S., Luo, Z., Nie, J., Zhang, S.: Semidefinite Relaxation Bounds for Indefinite Homogenous Quadratic Optimization. SIAM J. Optimization 19, 503–523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jackson, J.C.: Uniform-distribution learnability of noisy linear threshold functions with restricted focus of attention. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 304–318. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Kwapień, S., Latala, R., Oleszkiewicz, K.: Comparison of moments of sums of independent random variables and differential inequalities. J. Funct. Anal. 136, 258–268 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. König, H., Schütt, C., Tomczak-Jaegermann, N.: Projection constants of symmetric spaces and variants of Khintchine’s inequality. J. Reine Agnew. Math. 511, 1–42 (1999)

    Article  MATH  Google Scholar 

  20. Latala, R., Oleszkiewicz, K.: On the best constant in the Khinchin-Kahane inequality. Studia Math. 109, 101–104 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.: Testing halfspaces. SIAM J. on Comput. 39(5), 2004–2047 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Montgomery-Smith, S.: The distribution of Rademacher sums. In: Proceedings of the American Mathematical Society, pp. 517–522 (1990)

    Google Scholar 

  23. Maass, W., Turan, G.: How fast can a threshold gate learn? In: Computational Learning Theory and Natural Learning Systems: Volume I: Constraints and Prospects, pp. 381–414. MIT Press (1994)

    Google Scholar 

  24. O’Donnell, R.: Analysis of boolean functions. Technical report (2012), Book serialization available at http://analysisofbooleanfunctions.org/

  25. Oleszkiewicz, K.: On the Stein property of Rademacher sequences. Probability and Mathematical Statistics 16, 127–130 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Oleszkiewicz, K.: Comparison of moments via Poincaré-type inequality. In: Contemporary Mathematics, vol. 234, pp. 135–148 (1999)

    Google Scholar 

  27. O’Donnell, R., Servedio, R.: The Chow Parameters Problem. SIAM J. on Comput. 40(1), 165–199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peres, Y.: Noise stability of weighted majority (2004), http://arxiv.org/abs/math/0412377

  29. Pinelis, I.: Extremal probabilistic problems and Hotelling’s t 2 test under a symmetry condition. Ann. Statist. 22, 357–368 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pinelis, I.: An asymptotically Gaussian bound on the Rademacher tails. Electronic Journal of Probability 17, 1–22 (2012)

    Article  MathSciNet  Google Scholar 

  31. Renegar, J.: A faster PSPACE algorithm for deciding the existential theory of the reals. In: IEEE Annual Symposium on Foundations of Computer Science, pp. 291–295 (1988)

    Google Scholar 

  32. Servedio, R.: Every linear threshold function has a low-weight approximator. Comput. Complexity 16(2), 180–209 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. So, A.M.-C.: Improved approximation bound for quadratic optimization problems with orthogonality constraints. In: SODA, pp. 1201–1209 (2009)

    Google Scholar 

  34. Szarek, S.J.: On the best constants in the Khinchine inequality. Studia Math. 58, 197–208 (1976)

    MathSciNet  MATH  Google Scholar 

  35. Tomaszewski, B.: A simple and elementary proof of the Khintchine inequality with the best constant. Bull. Sci. Math. 111(2), 103–109 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De, A., Diakonikolas, I., Servedio, R. (2013). A Robust Khintchine Inequality, and Algorithms for Computing Optimal Constants in Fourier Analysis and High-Dimensional Geometry. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics