Abstract
We prove a complexity dichotomy theorem for symmetric complex-weighted Boolean #CSP when the constraint graph of the input must be planar. The problems that are #P-hard over general graphs but tractable over planar graphs are precisely those with a holographic reduction to matchgates. This generalizes a theorem of Cai, Lu, and Xia for the case of real weights. We also obtain a dichotomy theorem for a symmetric arity 4 signature with complex weights in the planar Holant framework, which we use in the proof of our #CSP dichotomy. In particular, we reduce the problem of evaluating the Tutte polynomial of a planar graph at the point (3,3) to counting the number of Eulerian orientations over planar 4-regular graphs to show the latter is #P-hard. This strengthens a theorem by Huang and Lu to the planar setting.
Full version with proofs available at [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Guo, H., Williams, T.: The complexity of planar Boolean #CSP with complex weights. CoRR abs/1212.2284 (2012)
Valiant, L.G.: The complexity of computing the permanent. TCS 8(2), 189–201 (1979)
Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)
Ising, E.: Beitrag zür theorie des ferromagnetismus. Zeitschrift für Physik 31(1), 253–258 (1925)
Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3-4), 117–149 (1944)
Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85(5), 808–816 (1952)
Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87(3), 404–409 (1952)
Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(3), 410–419 (1952)
Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—an exact result. Philosophical Magazine 6(68), 1061–1063 (1961)
Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27(12), 1209–1225 (1961)
Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press, London (1982)
Lieb, E.H., Sokal, A.D.: A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Comm. Math. Phys. 80(2), 153–179 (1981)
Welsh, D.: Complexity: Knots, Colourings and Countings. London Mathematical Society Lecture Note Series. Cambridge University Press (1993)
Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31(4), 1229–1254 (2002)
Valiant, L.G.: Expressiveness of matchgates. TCS 289(1), 457–471 (2002)
Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)
Valiant, L.G.: Accidental algorthims. In: FOCS, pp. 509–517. IEEE Computer Society (2006)
Cai, J.Y., Choudhary, V.: Some results on matchgates and holographic algorithms. Int. J. Software and Informatics 1(1), 3–36 (2007)
Cai, J.Y., Choudhary, V., Lu, P.: On the theory of matchgate computations. Theory of Computing Systems 45(1), 108–132 (2009)
Cai, J.Y., Lu, P.: On symmetric signatures in holographic algorithms. Theory of Computing Systems 46(3), 398–415 (2010)
Cai, J.Y., Lu, P.: Holographic algorithms: From art to science. J. Comput. Syst. Sci. 77(1), 41–61 (2011)
Vertigan, D.: The computational complexity of Tutte invariants for planar graphs. SIAM J. Comput. 35(3), 690–712 (2005)
Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture precisely tractable planar #CSP. In: FOCS, pp. 427–436. IEEE Computer Society (2010)
Cai, J.Y., Kowalczyk, M.: Spin systems on k-regular graphs with complex edge functions. TCS 461, 2–16 (2012)
Cai, J.Y., Kowalczyk, M., Williams, T.: Gadgets and anti-gadgets leading to a complexity dichotomy. In: ITCS, pp. 452–467. ACM (2012)
Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms by Fibonacci gates. Linear Algebra and its Applications 438(2), 690–707 (2013)
Cai, J.Y., Lu, P., Xia, M.: Holographic reduction, interpolation and hardness. Computational Complexity 21(4), 573–604 (2012)
Cai, J.Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: STOC, pp. 715–724. ACM (2009)
Cai, J.Y., Lu, P., Xia, M.: Computational complexity of Holant problems. SIAM J. Comput. 40(4), 1101–1132 (2011)
Dyer, M., Goldberg, L.A., Jerrum, M.: The complexity of weighted Boolean CSP. SIAM J. Comput. 38(5), 1970–1986 (2009)
Huang, S., Lu, P.: A dichotomy for real weighted Holant problems. In: IEEE Conference on Computational Complexity, pp. 96–106. IEEE Computer Society (2012)
Cai, J.Y., Guo, H., Williams, T.: A complete dichotomy rises from the capture of vanishing signatures. CoRR abs/1204.6445 (2012); STOC 2013 (to appear)
Las Vergnas, M.: Eulerian circuits of 4-valent graphs imbedded in surfaces. In: Lovász, L., Sós, V.T. (eds.) Algebraic Methods in Graph Theory. Colloq. Math. Soc. János Bolyai, pp. 451–477. North-Holland (1981)
Las Vergnas, M.: On the evaluation at (3, 3) of the Tutte polynomial of a graph. J. Comb. Theory, Ser. B 45(3), 367–372 (1988)
Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput. 31(2), 398–427 (2001)
Kowalczyk, M.: Dichotomy theorems for Holant problems. PhD thesis, University of Wisconsin—Madison (2010)
Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. Information and Computation 205(5), 651–678 (2007)
Bulatov, A., Dyer, M., Goldberg, L.A., Jalsenius, M., Richerby, D.: The complexity of weighted boolean #CSP with mixed signs. TCS 410(38-40), 3949–3961 (2009)
Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3-4), 260–289 (2000)
Bulatov, A., Grohe, M.: The complexity of partition functions. TCS 348(2), 148–186 (2005)
Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010)
Cai, J.Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy theorem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 275–286. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, H., Williams, T. (2013). The Complexity of Planar Boolean #CSP with Complex Weights. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)