Abstract
The technique of Schroeppel and Shamir (SICOMP, 1981) has long been the most efficient way to trade space against time for the Subset Sum problem. In the random-instance setting, however, improved tradeoffs exist. In particular, the recently discovered dissection method of Dinur et al. (CRYPTO 2012) yields a significantly improved space–time tradeoff curve for instances with strong randomness properties. Our main result is that these strong randomness assumptions can be removed, obtaining the same space–time tradeoffs in the worst case. We also show that for small space usage the dissection algorithm can be almost fully parallelized. Our strategy for dealing with arbitrary instances is to instead inject the randomness into the dissection process itself by working over a carefully selected but random composite modulus, and to introduce explicit space–time controls into the algorithm by means of a “bailout mechanism”.
P.A. supported by the Aalto Science Institute, the Swedish Research Council grant 621-2012-4546, and ERC Advanced Investigator grant 226203. P.K. supported by the Academy of Finland, grants 252083 and 256287. M.K. supported by the Academy of Finland, grants 125637, 218153, and 255675. A full version of the present conference abstract is available at: http://arxiv.org/abs/1303.0609
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knapsacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385. Springer, Heidelberg (2011)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: FOCS, pp. 677–686. IEEE Computer Society (2008)
Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 719–740. Springer, Heidelberg (2012)
Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM 21(2), 277–292 (1974)
Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)
Kaski, P., Koivisto, M., Nederlof, J.: Homomorphic hashing for sparse coefficient extraction. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 147–158. Springer, Heidelberg (2012)
Koivisto, M., Parviainen, P.: A space-time tradeoff for permutation problems. In: Charikar, M. (ed.) SODA, pp. 484–492. SIAM (2010)
Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Schulman, L.J. (ed.) STOC, pp. 321–330. ACM (2010)
Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)
Wang, J.: Space-efficient Las Vegas algorithms for k-sum. CoRR abs/1303.1016 (2013)
Woeginger, G.J.: Open problems around exact algorithms. Discrete Applied Mathematics 156(3), 397–405 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Austrin, P., Kaski, P., Koivisto, M., Määttä, J. (2013). Space–Time Tradeoffs for Subset Sum: An Improved Worst Case Algorithm. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)