SPACE-TIME TRADEOFFS FOR SUBSET SUM: AN IMPROVED WORST CASE ALGORITHM

PER AUSTRIN, PETTERI KASKI, MIKKO KOIVISTO, AND JUSSI MÄÄTTÄ

Abstract

The technique of Schroeppel and Shamir (SICOMP, 1981) has long been the most efficient way to trade space against time for the SubSET Sum problem. In the random-instance setting, however, improved tradeoffs exist. In particular, the recently discovered dissection method of Dinur et al. (CRYPTO 2012) yields a significantly improved space-time tradeoff curve for instances with strong randomness properties. Our main result is that these strong randomness assumptions can be removed, obtaining the same spacetime tradeoffs in the worst case. We also show that for small space usage the dissection algorithm can be almost fully parallelized. Our strategy for dealing with arbitrary instances is to instead inject the randomness into the dissection process itself by working over a carefully selected but random composite modulus, and to introduce explicit space-time controls into the algorithm by means of a "bailout mechanism".

1. Introduction

The protagonist of this paper is the Subset Sum problem.
Definition 1.1. An instance (\boldsymbol{a}, t) of SUBSET Sum consists of a vector $\boldsymbol{a} \in \mathbb{Z}_{\geq 0}^{n}$ and a target $t \in \mathbb{Z}_{\geq 0}$. A solution of (\boldsymbol{a}, t) is a vector $\boldsymbol{x} \in\{0,1\}^{n}$ such that $\sum_{i=1}^{n} a_{i} x_{i}=t$.

The problem is NP-hard (in essence, Karp's formulation of the knapsack problem [6]), and the fastest known algorithms take time and space that grow exponentially in n. We will write T and S for the exponential factors and omit the possible polynomial factors. The brute-force algorithm, with $T=2^{n}$ and $S=1$, was beaten four decades ago, when Horowitz and Sahni 4 gave a simple yet powerful meet-in-the-middle algorithm that achieves $T=S=2^{n / 2}$ by halving the set arbitrarily, sorting the $2^{n / 2}$ subsets of each half, and then quickly scanning through the relevant pairs of subsets that could sum to the target. Some years later, Schroeppel and Shamir [10] improved the space requirement of the algorithm to $S=2^{n / 4}$ by designing a novel way to list the half-sums in sorted order in small space. However, if allowing only polynomial space, no better than the trivial time bound of $T=2^{n}$ is known. Whether the constant bases of the exponentials in these bounds can be improved is a major open problem in the area of moderately exponential algorithms [11].

The difficulty of finding faster algorithms, whether in polynomial or exponential space, has motivated the study of space-time tradeoffs. From a practical point of

[^0]

Figure 1. Space-time tradeoff curves for the Subset Sum problem [10, 3]. The space and time requirements are $S=2^{\sigma n}$ and $T=2^{\tau n}$, omitting factors polynomial in the instance size n.
view, large space usage is often the bottleneck of computation, and savings in space usage can have significant impact even if they come at the cost of increasing the time requirement. This is because a smaller-space algorithm can make a better use of fast cache memories and, in particular, because a smaller-space algorithm often enables easier and more efficient large-scale parallelization. Typically, one obtains a smooth space-time tradeoff by combining the fastest exponential time algorithm with the fastest polynomial space algorithm into a hybrid scheme that interpolates between the two extremes. An intriguing question is then whether one can beat the hybrid scheme at some point, that is, to get a faster algorithm at some space budget -if one can break the hybrid bound somewhere, maybe one can break it everywhere. For the Subset Sum problem, a hybrid scheme is obtained by first guessing some g elements of the solution, and then running the algorithm of Schroeppel and Shamir for the remaining instance on $n-g$ elements. This yields $T=2^{(n+g) / 2}$ and $S=2^{(n-g) / 4}$, for any $0 \leq g \leq n$, and thereby the smooth tradeoff curve $S^{2} T=2^{n}$ for $1 \leq S \leq 2^{n / 4}$. We call this the Schroeppel-Shamir tradeoff.

While the Schroeppel-Shamir tradeoff has remained unbeaten in the usual worstcase sense, there has been remarkable recent progress in the random-instance setting [5, 1, 3. In a recent result, Dinur, Dunkelman, Keller, and Shamir 3] gave a tradeoff curve that matches the Schroeppel-Shamir tradeoff at the extreme points $S=1$ and $S=2^{n / 4}$ but is strictly better in between. The tradeoff is achieved by a novel dissection method that recursively decomposes the problem into smaller subproblems in two different "dimensions", the first dimension being the current subset of the n items, and the other dimension being (roughly speaking) the bits of information of each item. The algorithm of Dinur et al. runs in space $S=2^{\sigma n}$ and time $T=2^{\tau(\sigma) n}$ on random instances $(\tau(\sigma)$ is defined momentarily). See Figure 1 for an illustration and comparison to the Schroeppel-Shamir tradeoff. The tradeoff curve $\tau(\sigma)$ is piecewise linear and determined by what Dinur et al. call the "magic sequence" $2,4,7,11,16,22, \ldots$, obtained as evaluations of $\rho_{\ell}=1+\ell(\ell+1) / 2$ at $\ell=1,2, \ldots$.

Definition 1.2. Define $\tau:(0,1] \rightarrow[0,1]$ as follows. For $\sigma \in(0,1 / 2]$, let ℓ be the solution to $1 / \rho_{\ell+1}<\sigma \leq 1 / \rho_{\ell}$. Then

$$
\begin{equation*}
\tau(\sigma)=1-\frac{1}{\ell+1}-\frac{\rho_{\ell}-2}{\ell+1} \sigma \tag{1}
\end{equation*}
$$

If there is no such ℓ, that is, if $\sigma>1 / 2$, define $\tau(\sigma)=1 / 2$.
For example, at $\sigma=1 / 8$, we have $\ell=3$, and thereby $\tau(\sigma)=19 / 32$. Asymptotically, when σ is small, ℓ is essentially $\sqrt{2 / \sigma}$ and $\tau(\sigma) \approx 1-\sqrt{2 \sigma}$.

In this paper, we show that this space-time tradeoff result by Dinur et al. [3] can be made to hold also in the worst case:

Theorem 1.3. For each $\sigma \in(0,1]$ there exists a randomized algorithm that solves the SUBSET SUm problem with high probability, and runs in $O^{*}\left(2^{\tau(\sigma) n}\right)$ time and $O^{*}\left(2^{\sigma n}\right)$ space. The O^{*} notation suppresses factors that are polynomial in n, and the polynomials depend on σ.

To the best of our knowledge, Theorem 1.3 is the first improvement to the Schroeppel-Shamir tradeoff in the worst-case setting. Here we should remark that, in the random-instance setting, there are results that improve on both the Schroeppel-Shamir and the Dinur et al. tradeoffs for certain specific choices of the space budget S. In particular, Becker et al. give a $2^{0.72 n}$ time polynomial space algorithm and a $2^{0.291 n}$ time exponential space algorithm [1]. A natural question that remains is whether these two results could be extended to the worst-case setting. Such an extension would be a significant breakthrough (cf. [11]).

We also prove that the dissection algorithm lends itself to parallelization very well. As mentioned before, a general guiding intuition is that algorithms that use less space can be more efficiently parallelized. The following theorem shows that, at least in the case of the dissection algorithm, this intuition can be made formal: the smaller the space budget σ is, the closer we can get to full parallelization.

Theorem 1.4. The algorithm of Theorem 1.3 can be implemented to run in $O^{*}\left(2^{\tau(\sigma) n} / P\right)$ parallel time on P processors each using $O^{*}\left(2^{\sigma n}\right)$ space, provided $P \leq 2^{(2 \tau(\sigma)-1) n}$.
When σ is small, $\tau(\sigma) \approx 1-\sqrt{2 \sigma}$ and the bound on P is roughly $2^{(\tau(\sigma)-\sqrt{2 \sigma}) n}$. In other words we get a linear speedup almost all the way up to $2^{\tau(\sigma) n}$ processors, almost full parallelization.
1.1. Our contributions and overview of the proof. At a high level, our approach will follow the Dinur et al. dissection framework, with essential differences in preprocessing and low-level implementation to alleviate the assumptions on randomness. In particular, while we split the instance analogously to Dinur et al. to recover the tradeoff curve, we require more careful control of the sub-instances beyond just subdividing the bits of the input integers and assuming that the input is random enough to guarantee sufficient uniformity to yield the tradeoff curve. Accordingly we find it convenient to revisit the derivation of the tradeoff curve and the analysis of the basic dissection framework to enable a self-contained exposition.

In contrast with Dinur et al., our strategy for dealing with arbitrary instances is, essentially, to instead inject the required randomness into the dissection process itself. We achieve this by observing that dissection can be carried out over any algebraic structure that has a sufficiently rich family of homomorphisms to enable
us to inject entropy by selection of random homomorphisms, while maintaining an appropriate recursive structure for the selected homomorphisms to facilitate dissection. For the Subset Sum problem, in practice this means reduction from \mathbb{Z} to \mathbb{Z}_{M} over a composite M with a carefully selected (but random) lattice of divisors to make sure that we can still carry out recursive dissections analogously to Dinur et al. This approach alone does not provide sufficient control over an arbitrary problem instance, however.

The main obstacle is that, even with the randomness injected into the algorithm, it is very hard to control the resource consumption of the algorithm. To overcome this, we add explicit resource controls into the algorithm, by means of a somewhat cavalier "bailout mechanism" which causes the algorithm to simply stop when too many partial solutions have been generated. We set the threshold for such a bailout to be roughly the number of partial solutions that we would have expected to see in a random instance. This allows us to keep its running time and space usage in check, perfectly recovering the Dinur et al. tradeoff curve. The remaining challenge is then to prove correctness, i.e., that these thresholds for bailout are high enough so that no hazardous bailouts take place and a solution is indeed found. To do this we perform a localized analysis on the subtree of the recursion tree that contains a solution. Using that the constructed modulus M contains a lot of randomness (a consequence of the density of the primes), we can show that the probability of a bailout in any node of this subtree is $o(1)$, meaning that the algorithm finds a solution with high probability.

A somewhat curious effect is that in order for our analysis to go through, we require the original Subset Sum instance to have few, say $O(1)$, distinct solutions. In order to achieve this, we preprocess the instance by employing routine isolation techniques in \mathbb{Z}_{P} but implemented over \mathbb{Z} to control the number of solutions over \mathbb{Z}. The reason why we need to implement the preprocessing over \mathbb{Z} rather than than work in the modular setting is that the dissection algorithm itself needs to be able to choose a modulus M very carefully to deliver the tradeoff, and that choice is incompatible with having an extra prime P for isolation. This is somewhat curious because, intuitively, the more solutions an instance has, the easier it should be to find one. The reason why that is not the case in our setting is that, further down in the recursion tree, when operating with a small modulus M, every original solution gives rise to many additional spurious solutions, and if there are too many original solutions there will be too many spurious solutions.

A further property needed to support the analysis is that the numbers in the Subset Sum instance must not be too large, in particular we need $\log t=O(n)$. This we can also achieve by a simple preprocessing step where we hash down modulo a random prime, but again with implementation over the integers for the same reason as above.
1.2. Related work. The Subset Sum problem has recently been approached from related angles, with the interest in small space. Lokshtanov and Nederlof [9] show that the well-known pseudo-polynomial-time dynamic programming algorithm can be implemented in truly-polynomial space by algebraization. Kaski, Koivisto, and Nederlof [7] note that the sparsity of the dynamic programming table can be exploited to speedup the computations even if allowing only polynomial space.

Smooth space-time tradeoffs have been studied also for several other hard problems. Björklund et al. [2] derive a hybrid scheme for the Tutte polynomial that is a
host of various counting problems on graphs. Koivisto and Parviainen [8 consider a class of permutation problems (including, e.g., the traveling salesman problem and the feedback arc set problem) and show that a natural hybrid scheme can be beaten by a partial ordering technique.
1.3. Organization. In Section 2 we describe the dissection algorithm and give the main statements about its properties. In Section 3 we show that the algorithm runs within the desired time and space bounds. Then, in Section 4 we show that given a Subset Sum instance with at most $O(1)$ solutions, the dissection algorithm finds a solution. In Section 5 we give a standard isolation argument reducing general Subset Sum to the restricted case when there are at most $O(1)$ solutions, giving the last puzzle piece to complete the proof of Theorem 1.3 . In Section 6 we show that the algorithm lends itself to efficient parallelization by proving Theorem 1.4 .

2. The Main Dissection Algorithm

Before describing the main algorithm, we condense some routine preprocessing steps into the following theorem, whose proof we relegate to Section 5

Theorem 2.1. There is a polynomial-time randomized algorithm for preprocessing instances of SUBSET SUM which, given as input an instance (\boldsymbol{a}, t) with n elements, outputs a collection of $O\left(n^{3}\right)$ instances $\left(\boldsymbol{a}^{\prime}, t^{\prime}\right)$, each with n elements and $\log t^{\prime}=$ $O(n)$, such that if (\boldsymbol{a}, t) is a NO instance then so are all the new instances with probability $1-o(1)$, and if (\boldsymbol{a}, t) is a YES instance then with probability $\Omega(1)$ at least one of the new instances is a YES instance with at most $O(1)$ solutions.

By applying this preprocessing we may assume that the main algorithm receives an input (\boldsymbol{a}, t) that has $O(1)$ solutions and $\log t=O(n)$. We then introduce a random modulus M and transfer into a modular setting.

Definition 2.2. An instance (\boldsymbol{a}, t, M) of Modular Subset Sum consists of a vector $\boldsymbol{a} \in \mathbb{Z}_{\geq 0}^{n}$, a target $t \in \mathbb{Z}_{\geq 0}$, and a modulus $M \in \mathbb{Z}_{\geq 1}$. A solution of (\boldsymbol{a}, t, M) is a vector $\boldsymbol{x} \in\{0,1\}^{n}$ such that $\sum_{i=1}^{n} a_{i} x_{i} \equiv t(\bmod M)$.

The reason why we transfer to the modular setting is that the recursive dissection strategy extensively uses the fact that we have available a sufficiently rich family of homomorphisms to split the search space. In particular, in the modular setting this corresponds to the modulus M being "sufficiently divisible" (in a sense to be made precise later) to obtain control of the recursion.

Pseudocode for the main algorithm is given in Algorithm 1 In addition to the modular instance (\boldsymbol{a}, t, M), the algorithm accepts as further input the space parameter $\sigma \in(0,1]$.

The key high-level idea in the algorithm is to "meet in the middle" by splitting an instance of n items to two sub-instances of αn items and ($1-\alpha$) n items, guessing (over a smaller modulus M^{\prime} that divides M) what the sum should be after the first and before the second sub-instance, and then recursively solving the two subinstances subject to the guess. Figure 2 illustrates the structure of the algorithm.

We continue with some further high-level remarks.
(1) In the algorithm, two key parameters α and β are chosen, which control how the Modular Subset Sum instance is subdivided for the recursive calls. The precise choice of these parameters is given in Theorem 2.3 below, but at this point the reader is encouraged to simply think of them as some

```
Algorithm 1: GenerateSolutions \((\boldsymbol{a}, t, M, \sigma)\)
    Data: \((\boldsymbol{a}, t, M)\) is an \(n\)-element Modular Subset Sum instance, \(\sigma \in(0,1]\)
    Result: Iterates over up to \(\Theta^{*}\left(2^{n} / M\right)\) solutions of ( \(\boldsymbol{a}, t, M\) ) while using
                space \(O^{*}\left(2^{\sigma n}\right)\)
    begin
        if \(\sigma \geq 1 / 4\) then
            Report up to \(\Theta^{*}\left(2^{n} / M\right)\) solutions using the Shroeppel-Shamir
            algorithm
            return
        Choose \(\alpha \in(0,1), \beta \in(0,1)\) appropriately (according to Theorem 2.3)
        based on \(\sigma\)
        Let \(M^{\prime}\) be a factor of \(M\) of magnitude \(\Theta\left(2^{\beta n}\right)\)
        for \(s^{\prime}=0,1, \ldots, M^{\prime}-1\) do
            Allocate an empty lookup table
            Let \(\boldsymbol{l}=\left(a_{1}, a_{2}, \ldots, a_{\alpha n}\right)\) be the first \(\alpha n\) items of \(\boldsymbol{a}\)
            Let \(\boldsymbol{r}=\left(a_{\alpha n+1}, a_{\alpha n+2}, \ldots, a_{n}\right)\) be the remaining \((1-\alpha) n\) items of \(\boldsymbol{a}\)
            for \(\boldsymbol{y} \in \operatorname{GenerateSolutions}\left(\boldsymbol{l}, s^{\prime}, M^{\prime}, \frac{\sigma}{\alpha}\right)\) do
                Let \(s=\sum_{i=1}^{\alpha n} a_{i} y_{i} \bmod M\)
                Store \([s \rightarrow \boldsymbol{y}]\) in the lookup table
            for \(\boldsymbol{z} \in \operatorname{GenerateSolutions}\left(\boldsymbol{r}, t-s^{\prime}, M^{\prime}, \frac{\sigma}{1-\alpha}\right)\) do
                Let \(s=t-\sum_{i=\alpha n+1}^{n} a_{i} z_{i} \bmod M\)
                foreach \([s \rightarrow \boldsymbol{y}]\) in the lookup table do
                    Report solution \(\boldsymbol{x}=(\boldsymbol{y}, \boldsymbol{z})\)
                    if at least \(\Theta^{*}\left(2^{n} / M\right)\) solutions reported then
                Stop iteration and return
            Release the lookup table
```

parameters which should be chosen appropriately so as to optimize running time.
(2) The algorithm also chooses a factor M^{\prime} of M such that $M^{\prime}=\Theta\left(2^{\beta n}\right)$. The existence of sufficient factors at all levels of recursion is established in Section 4
(3) The algorithm should be viewed as an iterator over solutions. In other words, the algorithm has an internal state, and a next item functionality that we tacitly use by writing a for-loop over all solutions generated by the algorithm, which should be interpreted as a short-hand for repeatedly asking the iterator for the next item.
(4) The algorithm uses a "bailout mechanism" to control the running time and space usage. Namely, each recursive call will bail out after $\Theta^{*}\left(2^{n} / M\right)$ solutions are reported. (The precise bailout bound has a further multiplicative factor polynomial in n that depends on the top-level value of σ.) A preliminary intuition for the bound is that this is what one would expect to receive in a particular congruence class modulo M if the 2^{n} possible sums are randomly placed into the congruence classes.

Figure 2. Illustration of the recursive dissections made by the algorithm.

As a warmup to the analysis, let us first observe that, if we did not have the bailout step in line 19, correctness of the algorithm would be more or less immediate: for any solution \boldsymbol{x} of (\boldsymbol{a}, t, M), let $s=\sum_{i=1}^{\alpha n} a_{i} x_{i} \bmod M$. Then, when $s^{\prime}=s \bmod$ M^{\prime} in the outer for-loop (line 7), by an inductive argument we will find \boldsymbol{y} and \boldsymbol{z} in the two separate recursive branches and join the two partial solutions to form \boldsymbol{x}.

The challenge, of course, is that without the bailout mechanism we lack control over the resource consumption of the algorithm. Even though we have applied isolation to guarantee that there are not too many solutions of the top-level instance (\boldsymbol{a}, t), it may be that some branches of the recursion generate a huge number of solutions, affecting both running time and space (since we store partial solutions in a lookup table).

Let us then proceed to analyzing the algorithm with the bailout mechanism in place. The two main claims are as follows.

Theorem 2.3. Given a space budget $\sigma \in(0,1]$ and $M \geq 2^{n}$, if in each recursive step of Algorithm 1 the parameters α and β are chosen as

$$
\begin{equation*}
\alpha=1-\tau(\sigma) \tag{2}
\end{equation*}
$$

and

$$
\beta=1-\tau(\sigma)-\sigma
$$

then the algorithm runs in $O^{*}\left(2^{\tau(\sigma) n}\right)$ time and $O^{*}\left(2^{\sigma n}\right)$ space.
Theorem 2.4. For every $\sigma \in(0,1]$ there is a randomized algorithm that runs in time polynomial in n and chooses a top-level modulus $M \geq 2^{n}$ so that Algorithm 1 reports a solution of the non-modular instance (\boldsymbol{a}, t) with high probability over the choices of M, assuming that at least one and at most $O(1)$ solutions exist and that $\log t=O(n)$.

```
Algorithm 2: DummyDissection \((n, \sigma)\)
    Data: \(\sigma \in(0,1]\)
    begin
        if \(\sigma \geq 1 / 4\) then
            Run for \(2^{n / 2}\) steps
            return
        Let \(\alpha=1-\tau(\sigma), \beta=\alpha-\sigma\)
        for \(2^{\beta n}\) steps do
            DummyDissection \((\alpha n, \sigma / \alpha)\)
            DummyDissection \(((1-\alpha) n, \sigma /(1-\alpha))\)
```

We prove Theorem 2.3 in Section 3 and Theorem 2.4 in Section 4
Let us however here briefly discuss the specific choice of α and β in Theorem 2.3 . We arrived at (2) by analyzing the recurrence relation describing the running time of Algorithm[1. Unfortunately this recurrence in its full form is somewhat complicated, and our process of coming up with (2) involved a certain amount of experimenting and guesswork. We do have some guiding (non-formal) intuition which might be instructive:
(1) One needs to make sure that $\alpha-\beta \leq \sigma$. This is because for a random instance, the left subinstance is expected to have roughly $2^{(\alpha-\beta) n}$ solutions, and since we need to store these there had better be at most $2^{\sigma n}$ of them.
(2) Since $\beta \geq \alpha-\sigma$ and β has a very direct impact on running time (due to the $2^{\beta n}$ time outer loop), one will typically want to set α relatively small. The tension here is of course that the smaller α becomes, the larger $1-\alpha$ (that is, the size of the right subinstance) becomes.
(3) Given this tension, setting $\alpha-\beta=\sigma$ is natural.

So in an intuitive sense, the bottleneck for space comes from the left subinstance, or rather the need to store all the solutions found for the left subinstance (this is not technically true since we give the right subinstance $2^{\sigma n}$ space allowance as well), whereas the bottleneck for time comes from the right subinstance, which tends to be much larger than the left one.

3. Analysis of Running Time and Space Usage

In this section we prove Theorem 2.3 giving the running time upper bound on the dissection algorithm. For this, it is convenient to define the following function, which is less explicit than τ but more naturally captures the running time of the algorithm.

Definition 3.1. Define $F:(0,1] \rightarrow(0,1)$ by the following recurrence for $\sigma<1 / 4$:

$$
\begin{equation*}
F(\sigma)=\beta+\max \left\{\alpha F\left(\frac{\sigma}{\alpha}\right),(1-\alpha) F\left(\frac{\sigma}{1-\alpha}\right)\right\} \tag{3}
\end{equation*}
$$

where $\alpha=1-\tau(\sigma)$ and $\beta=\alpha-\sigma$. The base case is $F(\sigma)=1 / 2$ for $\sigma \geq 1 / 4$.
To analyze the running time of the dissection algorithm, let us first define a "dummy" version of Algorithm 1, given as Algorithm 2, The dummy version is a bare bones version of Algorithm 1 which generates the same recursion tree.

The following lemma is immediate from the definition of $F(\sigma)$.
Lemma 3.2. Algorithm 2 runs in $O^{*}\left(2^{F(\sigma) n}\right)$ time on input (n, σ).
Next, we can relate the running time of the dummy algorithm to the running time of the actual algorithm. Ignoring polynomial factors such as those arising from updating the lookup table, the only time-consuming step of Algorithm 1 that we have omitted in Algorithm 2 is the combination loop in steps 16 to 19 . The total amount of time spent in this loop in any fixed recursive call is, by virtue of step 19 , at most $O^{*}\left(2^{n} / M\right)$. So if $M \geq 2^{(1-F(\sigma)) n}$ then this time is dominated by the run time from the recursive calls. In other words:

Lemma 3.3. Consider running Algorithm 1 on input (a,t,M, σ). If in every recursive call made it holds that $M \geq 2^{(1-F(\sigma)) n}$ then the running time is within a polynomial factor of the running time of Algorithm 2 on input (n, σ), that is, at most $O^{*}\left(2^{F(\sigma) n}\right)$.

The next key piece is the following lemma, stating that the function F is nothing more than a reformulation of $\tau(\sigma)$. We defer the proof to Section 3.1.

Lemma 3.4. For every $\sigma \in(0,1]$ it holds that $F(\sigma)=\tau(\sigma)$.
Equipped with this lemma, we are in good shape to prove Theorem 2.3.
Theorem 2.3 (restated). Given a space budget $\sigma \in(0,1]$ and $M \geq 2^{n}$, if in each recursive step of Algorithm 1 the parameters α and β are chosen as

$$
\begin{equation*}
\alpha=1-\tau(\sigma) \quad \text { and } \quad \beta=1-\tau(\sigma)-\sigma \tag{4}
\end{equation*}
$$

then the algorithm runs in $O^{*}\left(2^{\tau(\sigma) n}\right)$ time and $O^{*}\left(2^{\sigma n}\right)$ space.
Proof of Theorem 2.3. Let us start with space usage. There are three items to bound: (1) the space usage in the left branch (step 11), (2) the space usage in the right branch (step 14), and (3) the total number of solutions found in the left branch (as these are all stored in a lookup table). For (1), the subinstance ($\boldsymbol{l}, s^{\prime}, M^{\prime}$) has αn items and has a space budget of σ / α, so by an inductive argument it uses space $O\left(2^{\frac{\sigma}{\alpha} \alpha n}\right)=O\left(2^{\sigma n}\right)$. The case for (2) is analogous. It remains to bound (3), which is clearly bounded by the number of solutions found in the recursive step 11 . However, by construction, this is (up to a suppressed factor polynomial in n) at most $2^{\alpha n} / M^{\prime}=O\left(2^{(\alpha-\beta) n}\right)=O\left(2^{\sigma n}\right)$.

We thus conclude that the total space usage of the algorithm is bounded by $O^{*}\left(d 2^{\sigma n}\right)$ where d is the recursion depth, which is $O(1)$ by Lemma 4.2 ,

Let us turn to time usage. First, to apply Lemma 3.3 , we need to make sure that we always have $M \geq 2^{(1-F(\sigma)) n}=2^{(1-\tau(\sigma)) n}$ in every recursive call. In the top level call this is true since $M \geq 2^{n}$. Suppose (inductively) that it is true in some recursive call, and let us prove that it holds for both left- and right-recursive calls. We refer to the respective values of the parameters by adding subscripts l and r.

In a left-recursive call, we have $n_{l}=\alpha n, M_{l}=2^{\beta n}$, and $\sigma_{l}=\sigma / \alpha$. We thus need $2^{\beta n} \geq 2^{(1-\tau(\sigma / \alpha)) \alpha n}$. Noting that $1-\tau(\sigma / \alpha) \leq 1 / 2$ and that $\beta \geq \alpha / 2$ (this is equivalent to $\tau(\sigma)<1-2 \sigma)$, we see that M_{l} is sufficiently large.

In a right-recursive call, we have $n_{r}=(1-\alpha) n=\tau(\sigma) n, M_{r}=2^{\beta n}$, and $\sigma_{r}=\sigma /(1-\alpha)=\sigma / \tau(\sigma)$. By Proposition 3.6, we have $1-\tau\left(\sigma_{r}\right)=(1-\sigma-$ $\tau(\sigma)) / \tau(\sigma)=\beta / \tau(\sigma)$, from which we conclude that $M_{r}=2^{\left(1-\tau\left(\sigma_{r}\right)\right) n_{r}}$.

Thus the conditions of Lemma 3.3 are satisfied, and the running time bound of $O^{*}\left(2^{\tau(\sigma) n}\right)$ for Algorithm 1 is a direct consequence of Lemmata 3.2, 3.3, and 3.4.
3.1. Proof of Lemma 3.4. We first prove some useful properties of the τ function.

Proposition 3.5. The map $\sigma \mapsto \sigma / \tau(\sigma)$ is increasing in $\sigma \in(0,1]$. Furthermore, for $\sigma=1 / \rho_{\ell+1}$, we have $\sigma / \tau(\sigma)=1 / \rho_{\ell}$.

Proof. Let $\sigma \in(0,1]$, and let $\sigma^{\prime}=\sigma / \tau(\sigma)$. If $\sigma>1 / 2$, then $\tau(\sigma)=1 / 2$, and thus $\sigma^{\prime}=2 \sigma$ is increasing in σ. Otherwise $1 / \rho_{\ell+1}<\sigma \leq 1 / \rho_{\ell}$ for some $\ell \geq 1$, and $\tau(\sigma)=\left(\ell-\left(\rho_{\ell}-2\right) \sigma\right) /(\ell+1)$. Thus

$$
\frac{1}{\sigma^{\prime}}=\frac{\tau(\sigma)}{\sigma}=\frac{\ell-\left(\rho_{\ell}-2\right) \sigma}{(\ell+1) \sigma}=\frac{\ell / \sigma-\rho_{\ell}+2}{\ell+1}
$$

from which it follows that σ^{\prime} is increasing in σ in the interval $\left(1 / \rho_{\ell+1}, 1 / \rho_{\ell}\right]$.
Suppose $\sigma=1 / \rho_{\ell+1}$. Use first $\rho_{\ell+1}=\rho_{\ell}+\ell+1$ and then $\ell(\ell+1)=2\left(\rho_{\ell}-1\right)$ to obtain

$$
\frac{1}{\sigma^{\prime}}=\frac{\ell\left(\rho_{\ell}+\ell+1\right)-\rho_{\ell}+2}{\ell+1}=\frac{(\ell-1) \rho_{\ell}+2\left(\rho_{\ell}-1\right)+2}{\ell+1}=\rho_{\ell}
$$

Proposition 3.6. Let $\sigma \in(0,1]$. If $\sigma>1 / 2$, then $\tau(\sigma)=1 / 2$, and otherwise

$$
\tau(\sigma)=\frac{1-\sigma}{2-\tau(\sigma / \tau(\sigma))}
$$

Proof. The case $\sigma>1 / 2$ is obvious. Fix $\sigma \leq 1 / 2$ and $\ell \geq 1$ such that $1 / \rho_{\ell+1}<\sigma \leq$ $1 / \rho_{\ell}$ and let $\sigma^{\prime}=\sigma / \tau(\sigma)$. By Proposition 3.5 we have that $1 / \rho_{\ell}<\sigma^{\prime} \leq 1 / \rho_{\ell-1}$. Using $\tau\left(\sigma^{\prime}\right)=\left(\ell-1-\left(\rho_{\ell-1}-2\right) \sigma^{\prime}\right) / \ell$ we obtain

$$
2-\tau\left(\sigma^{\prime}\right)=\frac{\ell+1+\left(\rho_{\ell-1}-2\right) \sigma^{\prime}}{\ell}
$$

Plugging in $\sigma^{\prime}=\sigma / \tau(\sigma)$ and using $\rho_{\ell-1}=\rho_{\ell}-\ell$ gives

$$
\begin{equation*}
2-\tau\left(\sigma^{\prime}\right)=\frac{(\ell+1) \tau(\sigma)+\left(\rho_{\ell}-\ell-2\right) \sigma}{\ell \tau(\sigma)} \tag{5}
\end{equation*}
$$

As $\tau(\sigma)=\left(\ell-\left(\rho_{\ell}-2\right) \sigma\right) /(\ell+1)$, the numerator of this expression equals

$$
\ell-\left(\rho_{\ell}-2\right) \sigma+\left(\rho_{\ell}-\ell-2\right) \sigma=\ell(1-\sigma)
$$

Plugging this into (5) we conclude that

$$
2-\tau\left(\sigma^{\prime}\right)=\frac{1-\sigma}{\tau(\sigma)}
$$

which is a simple rearrangement of the desired conclusion.
We are now ready to prove Lemma 3.4 .
Lemma 3.4 (restated). For every $\sigma \in(0,1]$ it holds that $F(\sigma)=\tau(\sigma)$.
Proof of Lemma 3.4. The proof is by induction on the value of ℓ such that $1 / \rho_{\ell+1}<$ $\sigma \leq 1 / \rho_{\ell}$. The base case, $\sigma \geq 1 / 4$ (that is, $\ell \leq 1$) is clear from the definitions.

For the induction step, fix some value of $\ell \geq 2$, and assume that $F\left(\sigma^{\prime}\right)=\tau\left(\sigma^{\prime}\right)$ for all $\sigma^{\prime}>1 / \rho_{\ell}$. We need to show that for any σ in the interval $\left[1 / \rho_{\ell+1}, 1 / \rho_{\ell}\right)$, it holds that $F(\sigma)=\tau(\sigma)$. To this end, we set $\alpha=1-\tau(\sigma)$ and $\beta=1-\tau(\sigma)-\sigma$, and show that the two options in the max in (3) are bounded by $\tau(\sigma)$, one with equality.

Figure 3. The dissection tree $\mathcal{D} \mathcal{T}$ (0.05). For each internal node v, we display the parameters $\sigma_{v}, \tau_{v}=\tau\left(\sigma_{v}\right), \alpha_{v}, \beta_{v}, \gamma_{v}$ as defined in Section 4.

Consider first the second option. Set $\sigma^{\prime}=\sigma /(1-\alpha)=\sigma / \tau(\sigma)$. By Proposition 3.5. we have $\sigma^{\prime}>1 / \rho_{\ell}$. Thus, by the induction hypothesis we have $F\left(\sigma^{\prime}\right)=$ $\tau\left(\sigma^{\prime}\right)$, and hence the second option in (3) equals

$$
\beta+(1-\alpha) \tau\left(\sigma^{\prime}\right)=1-\tau(\sigma)-\sigma+\tau(\sigma) \tau(\sigma / \tau(\sigma))=\tau(\sigma)
$$

where the last step is an application of Proposition 3.6
Consider then the first option. Let $\sigma^{\prime \prime}=\sigma / \alpha$ be the value passed to F in this branch. It is easy to check that $\sigma^{\prime \prime} \geq \sigma^{\prime}>1 / \rho_{\ell}$. So the induction hypothesis applies, and we get an upper bound of

$$
\beta+\alpha \tau\left(\sigma^{\prime \prime}\right)<\beta+(1-\alpha) \tau\left(\sigma^{\prime}\right) \leq \tau(\sigma)
$$

The first step uses $\tau(\sigma) \geq 1 / 2$ (yielding $\alpha<1 / 2$) and the monotonicity of τ, and the last step uses the bound on the second option.

4. Choice of Modulus and Analysis of Correctness

In this section we prove Theorem 2.4, giving the correctness of the dissection algorithm.
4.1. The dissection tree. Now that we have the choice of α and β in Algorithm 1 , we can look more closely at the recursive structure of the algorithm. To this end, we make the following definition.

Definition 4.1 (Dissection tree). For $\sigma \in(0,1]$, the dissection tree $\mathcal{D} \mathcal{T}(\sigma)$ is the ordered binary tree defined as follows. If $\sigma \geq 1 / 4$ then $\mathcal{D} \mathcal{T}(\sigma)$ is a single node. Otherwise, let $\alpha=1-\tau(\sigma)$. The left child of $\mathcal{D} \mathcal{T}(\sigma)$ is $\mathcal{D} \mathcal{T}(\sigma / \alpha)$, and the right child of $\mathcal{D} \mathcal{T}(\sigma)$ is $\mathcal{D} \mathcal{T}(\sigma /(1-\alpha))$.

Figure 3 shows $\mathcal{D} \mathcal{T}$ (0.05). The dissection tree captures the essence of the recursive behaviour of the dissection algorithm when being run with parameter σ. The actual recursion tree of the dissection algorithm is huge due to the for-loop over
s^{\prime} in line 7. but if we consider a fixed choice of s^{\prime} in every recursive step then the recursion tree of the algorithm becomes identical to the corresponding dissection tree.

Lemma 4.2. The recursion depth of Algorithm 1 is the height of $\mathcal{D T}(\sigma)$. In particular, the recursion depth is a constant that depends only on σ.

We now describe how to choose a priori a random M that is "sufficiently divisible" for the algorithm's desires, and to show correctness of the algorithm.

Fix a choice of the top-level value $\sigma \in(0,1]$. Consider the corresponding dissection tree $\mathcal{D} \mathcal{T}(\sigma)$. For each node v of $\mathcal{D} \mathcal{T}(\sigma)$, write σ_{v} for the associated σ value. For an internal node v let us also define $\alpha_{v}=1-\tau\left(\sigma_{v}\right)$ and $\beta_{v}=1-\sigma_{v}-\tau\left(\sigma_{v}\right)$. In other words, if v_{1} and v_{2} are the two child nodes of v, then $\sigma_{v_{1}}=\sigma_{v} / \alpha_{v}$ and $\sigma_{v_{2}}=\sigma_{v} /\left(1-\alpha_{v}\right)$. Finally, define $\gamma_{v}=\beta_{v} \cdot \sigma / \sigma_{v}$.

Observe that each recursive call made by Algorithm 1 is associated with a unique internal node v of the dissection tree $\mathcal{D} \mathcal{T}(\sigma)$.

Lemma 4.3. Each recursive call associated with an internal node v requires a factor M^{\prime} of magnitude $\Theta^{*}\left(2^{\gamma_{v} n}\right)$.

Proof. Telescope a product of the ratio σ_{p} / σ_{u} for a node u and its parent p along the path from v to the root node. Each such σ_{p} / σ_{u} is either α_{u} or $1-\alpha_{u}$ depending on whether it is a left branch or right branch-precisely the factor by which n decreases.
4.2. Choosing the modulus. The following lemma contains the algorithm that chooses the random modulus.

Lemma 4.4. For every $\sigma \in(0,1]$ there exists a randomized algorithm that, given integers n and $b=O(n)$ as input, runs in time polynomial in n and outputs for each internal node $v \in \mathcal{D} \mathcal{T}(\sigma)$ random moduli M_{v}, M_{v}^{\prime} such that, for the root node $r \in \mathcal{D} \mathcal{T}(\sigma), M_{r} \geq 2^{b}$, and furthermore for every internal node v :
(1) M_{v}^{\prime} is of magnitude $\Theta\left(2^{\gamma_{v} n}\right)$,
(2) $M_{v}=M_{p}^{\prime}$, where p is the parent of v,
(3) M_{v}^{\prime} divides M_{v}, and
(4) for any fixed integer $1 \leq Z \leq 2^{b}$, the probability that M_{v}^{\prime} divides Z is $O^{*}\left(1 / M_{v}^{\prime}\right)$.

Proof. Let $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}$ be the set of distinct values of γ_{v} ordered by value, and let $\delta_{i}=\lambda_{i}-\lambda_{i-1}$ be their successive differences (where we set $\lambda_{0}=0$ so that $\delta_{1}=\lambda_{1}$). Since $\mathcal{D} \mathcal{T}(\sigma)$ depends only σ and not on n, we have $k=O(1)$. For each $1 \leq i \leq k$ independently, let p_{i} be a uniform random prime from the interval $\left[2^{\delta_{i} n}, 2 \cdot 2^{\delta_{i} n}\right]$.

For a node v such that $\gamma_{v}=\lambda_{j}$, let $M_{v}^{\prime}=\prod_{i=1}^{j} p_{j}$. Condition 1 then holds by construction. The values of M_{v} are the determined for all nodes except the root through condition 2 for the root node r we set $M_{r}=p_{0} M_{r}^{\prime}$, where p_{0} is a random prime of magnitude $2^{\Theta(n)}$ to make sure that $M_{r} \geq 2^{b}$.

To prove condition 3 note that for any node v with parent p, we need to prove that M_{v}^{\prime} divides M_{p}^{\prime}. Let j_{v} be such that $\lambda_{j_{v}}=\gamma_{v}$ and j_{p} such that $\lambda_{j_{p}}=\gamma_{p}$. Noting that the value of γ_{v} decreases as one goes down the dissection tree, it then holds that $j_{v}<j_{p}$, from which it follows that $M_{v}^{\prime}=\prod_{i=1}^{j_{v}} p_{i}$ divides $M_{p}^{\prime}=\prod_{i=1}^{j_{p}} p_{i}$.

Finally, for condition 4, again let j be such that $\lambda_{j}=\gamma_{v}$, and observe that in order for Z to divide M_{v}^{\prime} it must have all the factors $p_{1}, p_{2}, \ldots, p_{j}$. For each $1 \leq i \leq j, Z$ can have at most $\frac{\log _{2} Z}{\delta_{i} n}=O(1)$ different factors between $2^{\delta_{i} n}$ and $2 \cdot 2^{\delta_{i} n}$, so by the Prime Number Theorem, the probability that p_{i} divides Z is at most $O\left(n 2^{-\delta_{i} n}\right)$. As the p_{i} 's are chosen independently the probability that Z divides all of $p_{1}, p_{2}, \ldots, p_{j}$ (that is, $\left.M_{v}^{\prime}\right)$ is $O\left(n^{j} 2^{-\left(\delta_{1}+\delta_{2}+\ldots+\delta_{j}\right) n}\right)=O\left(n^{k} 2^{-\gamma_{v} n}\right)=O^{*}\left(1 / M_{v}^{\prime}\right)$, as desired.
4.3. Proof of correctness. We are now ready to prove the correctness of the entire algorithm, assuming preprocessing and isolation has been carried out.
Theorem $\sqrt{2.4}$ (restated). For every $\sigma \in(0,1]$ there is a randomized algorithm that runs in time polynomial in n and chooses a top-level modulus $M \geq 2^{n}$ so that Algorithm 1 reports a solution of the non-modular instance (a,t) with high probability over the choices of M, assuming that at least one and at most $O(1)$ solutions exist and that $\log t=O(n)$.
Proof. The modulus M is chosen using Lemma 4.4, with b set to $\max \{n, \log n t\}=$ $\Theta(n)$. Specifically, it is chosen as M_{r} for the root node r of $\mathcal{D} \mathcal{T}(\sigma)$.

Fix a solution \boldsymbol{x}^{*} of (\boldsymbol{a}, t), that is, $\sum_{i=1}^{n} a_{i} x_{i}^{*}=t$. (Note that this is an equality over the integers and not a modular congruence.) By assumption such an \boldsymbol{x}^{*} exists and there are at most $O(1)$ choices.

If $\sigma \geq 1 / 2$, the top level recursive call executes the Schroeppel-Shamir algorithm and a solution will be discovered. So suppose that $\sigma \in(0,1 / 4)$.

For an internal node $v \in \mathcal{D} \mathcal{T}(\sigma)$ consider a recursive call associated with v, and let $L_{v} \subseteq[n]$ (resp. $\left.R_{v} \subseteq[n]\right)$ be the set of $\alpha_{v} n_{v}$ (resp. $\left(1-\alpha_{v}\right) n_{v}$) indices of the items that are passed to the left (resp. right) recursive subtree of v. Note that these indices are with respect to the top-level instance, and that they do not depend on the choices of s^{\prime} made in the recursive calls. Let $s_{v}^{\prime} \in\left\{0, \ldots, M_{v}^{\prime}\right\}$ be the choice of s^{\prime} that could lead to the discovery of \boldsymbol{x}^{*}, in other words $s_{v}^{\prime}=\sum_{i \in L_{v}} a_{i} x_{i}^{*} \bmod M_{v}^{\prime}$. Let $I_{v}=L_{v} \cup R_{v}$.

For a leaf node $v \in \mathcal{D} \mathcal{T}(\sigma)$ and its parent p, define $I_{v}=L_{p}$ if v is a left child of p, and $I_{v}=R_{p}$ if v is a right child of p.

We now restrict our attention to the part of the recursion tree associated with the discovery of \boldsymbol{x}^{*}, or in other words, the recursion tree obtained by fixing the value of s^{\prime} to s_{v}^{\prime} in each recursive step, rather than trying all possibilities. This restricted recursion tree is simply $\mathcal{D} \mathcal{T}(\sigma)$. Thus the set of items $\boldsymbol{a}_{v}=\left(a_{i}\right)_{i \in I_{v}}$ and the target t_{v} associated with v is well-defined for all $v \in \mathcal{D} \mathcal{T}(\sigma)$.

Denote by $B(v)$ the event that $\left(\boldsymbol{a}_{v}, t_{v}, M_{v}\right)$ has more than $O^{*}\left(2^{n_{v}} / M_{v}\right)$ solutions. Clearly, if $B(v)$ does not happen then there can not be a bailout at node $v{ }^{1}$ We will show that $\cup_{v \in \mathcal{D T}(\sigma)} B(v)$ happens with probability $o(1)$ over the choices of $\left\{M_{v}, M_{v}^{\prime}\right\}$ from Lemma 4.4, which thus implies that \boldsymbol{x}^{*} is discovered with probability $1-o(1)$. Because $\mathcal{D} \mathcal{T}(\sigma)$ has $O(1)$ nodes, by the union bound it suffices to show that $\operatorname{Pr}[B(v)]=o(1)$ for every $v \in \mathcal{D} \mathcal{T}(\sigma)$.

Consider an arbitrary node $v \in \mathcal{D} \mathcal{T}(\sigma)$. There are two types of solutions \boldsymbol{x}_{v} of the instance $\left(\boldsymbol{a}_{v}, t_{v}, M_{v}\right)$ associated with v.

First, a vector $\boldsymbol{x}_{v} \in\{0,1\}^{n_{v}}$ is a solution if $\sum_{i=1}^{n_{v}} a_{v, i} x_{v, i}=\sum_{i \in I_{v}} a_{i} x_{i}^{*}$. (Note that this is an equality over the integers, not a modular congruence.) Because there

[^1]are at most $O(1)$ solutions to the top-level instance, there are at most $O(1)$ such vectors \boldsymbol{x}_{v}. Indeed, otherwise we would have more than $O(1)$ solutions of the top level instance, a contradiction.

Second, consider a vector $\boldsymbol{x}_{v} \in\{0,1\}^{n_{v}}$ such that $\sum_{i=1}^{n_{v}} a_{v, i} x_{v, i} \neq \sum_{i \in I_{v}} a_{i} x_{i}^{*}$ (over the integers). Let $Z=\left|\sum_{i=1}^{n_{v}} a_{v, i} x_{v, i}-\sum_{i \in I_{v}} a_{i} x_{i}^{*}\right| \neq 0$. Such a vector \boldsymbol{x}_{v} is a solution of $\left(\boldsymbol{a}_{v}, t_{v}, M_{v}\right)$ only if M_{v} divides Z. Since $\log t=O(n)$ and $1 \leq Z \leq n t$, by Lemma 4.4 item 4 we have that Z is divisible by M_{v} with probability $O^{*}\left(1 / M_{v}\right)$.

From the two cases it follows that the expected number of solutions \boldsymbol{x}_{v} of $\left(\boldsymbol{a}_{v}, t_{v}, M_{v}\right)$ is $E=O^{*}\left(2^{n_{v}} / M_{v}\right)$. (We remark that the degree in the suppressed polynomial depends on σ but not on n.) Setting the precise bailout threshold to $n \cdot E$, we then have by Markov's inequality that $\operatorname{Pr}[B(v)]=\operatorname{Pr}\left[\#\right.$ solutions $\boldsymbol{x}_{v}>$ $n E]<1 / n=o(1)$, as desired. Since v was arbitrary, we are done.

5. Preprocessing and Isolation

This section proves Theorem 2.1 using standard isolation techniques.
Theorem 2.1 (restated). There is a polynomial-time randomized algorithm for preprocessing instances of SUBSET SUM which, given as input an instance (\boldsymbol{a}, t) with n elements, outputs a collection of $O\left(n^{3}\right)$ instances $\left(\boldsymbol{a}^{\prime}, t^{\prime}\right)$, each with n elements and $\log t^{\prime}=O(n)$, such that if (\boldsymbol{a}, t) is a NO instance then so are all the new instances with probability $1-o(1)$, and if (\boldsymbol{a}, t) is a YES instance then with probability $\Omega(1)$ at least one of the new instances is a YES instance with at most $O(1)$ solutions.
Proof. We carry out the preprocessing in two stages. Each stage considers its input instances (\boldsymbol{a}, t) one at a time and produces one or more instances $\left(\boldsymbol{a}^{\prime}, t^{\prime}\right)$ for the next stage, the output of the second stage being the output of the procedure.

The first stage takes as input the instance (\boldsymbol{a}, t) given as input to the algorithm. Without loss of generality we may assume that (\boldsymbol{a}, t) satisfies $a_{i} \leq t$ for all $i=$ $1,2, \ldots, n$. Indeed, we may simply remove all elements i with $a_{i}>t$. Hence $0 \leq \sum_{i=1}^{n} a_{i} x_{i} \leq n t$ for all $\boldsymbol{x} \in\{0,1\}^{n}$. A further immediate observation is that we may assume that $\log n t \leq 2^{n}$. Indeed, otherwise we can do an exhaustive search over all the 2^{n} subsets of the input integers in polynomial time in the input size (and then output a trivial YES or NO instance based on the outcome without proceeding to the second stage). Next, select a uniform random prime P with, say, $3 n+1$ bits. For each $k=0,1,2, \ldots, n-1$, form one instance ($\boldsymbol{a}^{\prime}, t^{\prime}$) by setting $t^{\prime}=t \bmod P+k P$ and $a_{i}^{\prime}=a_{i} \bmod P$ for $i=1,2, \ldots, n$. Observe that every solution of (\boldsymbol{a}, t) is a solution of $\left(\boldsymbol{a}^{\prime}, t^{\prime}\right)$ for at least one value of k. We claim that with high probability each of the n instances $\left(\boldsymbol{a}^{\prime}, t^{\prime}\right)$ has no other solutions beyond the solutions of (\boldsymbol{a}, t).

Consider an arbitrary vector $\boldsymbol{x} \in\{0,1\}^{n}$ that is not a solution of (\boldsymbol{a}, t) but is a solution of ($\boldsymbol{a}^{\prime}, t^{\prime}$). This happens only if P divides $Z=\left|t-\sum_{i=1}^{n} a_{i} x_{i}\right| \neq 0$. Let us analyze the probability for the event that P divides Z. Since $Z \leq n t$ has at most 2^{n} bits (recall that $\log n t \leq 2^{n}$), there can be at most $2^{n} /(3 n)$ primes with $3 n+1$ bits that divide Z. By the Prime Number Theorem we know that there are $\Omega\left(2^{3 n+1} / n\right)$ primes with $3 n+1$ bits. Since P is a uniform random prime with $3 n+1$ bits, we have that P divides Z with probability $O\left(2^{-2 n} n^{2}\right)$. By linearity of expectation, the expected number of vectors $\boldsymbol{x} \in\{0,1\}^{n}$ that are not solutions of (\boldsymbol{a}, t) but are solutions of $\left(\boldsymbol{a}^{\prime}, t^{\prime}\right)$ is thus $O\left(2^{-n} n^{2}\right)$. By an application of Markov's inequality and the union bound, with probability $1-o(1)$ each of the n instances $\left(\boldsymbol{a}^{\prime}, t^{\prime}\right)$ has no
other solutions beyond the solutions of (\boldsymbol{a}, t). By construction, $\log t^{\prime}=O(n)$. This completes the first stage.

The second stage controls the number of solutions by a standard isolation technique. Consider an instance (\boldsymbol{a}, t) input to the second stage. Assume that the set of all solutions $S \subseteq\{0,1\}^{n}$ of (\boldsymbol{a}, t) is nonempty and guess that it has size in the range $2^{s} \leq|S| \leq 2^{s+1}$ for $s=0,1, \ldots, n-1$. (That is, we try out all values and at least one will be the correct guess.) Select (arbitrarily) a prime P in the interval $2^{s} \leq P \leq 2^{s+1}$. Select $r_{1}, r_{2}, \ldots, r_{n}$ and u independently and uniformly at random from $\{0,1, \ldots, P-1\}$.

For any fixed $\boldsymbol{x} \in S$, we have that

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i} x_{i} \equiv u \quad(\bmod P) \tag{6}
\end{equation*}
$$

holds with probability $1 / P$ over the random choices of $r_{1}, r_{2}, \ldots, r_{n}, u$. Similarly, any distinct $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in S$ both satisfy (6) with probability $1 / P^{2}$.

Fix a correct guess of s, so that $1 \leq|S| / P \leq 2$, and let the random variable S_{P} be the number of solutions in S that also satisfy (6). Letting $\lambda=|S| / P$ we then have

$$
\mathbb{E}\left[S_{P}\right]=\lambda \quad \text { and } \quad \mathbb{E}\left[S_{P}^{2}\right]=\mathbb{E}\left[S_{P}\right]+\frac{|S|(|S|-1)}{P^{2}}<\lambda+\lambda^{2}
$$

so the first and second moment methods give

$$
\begin{aligned}
\operatorname{Pr}\left[S_{P}>10\right] & <\frac{\mathbb{E}\left[S_{P}\right]}{10}=\frac{\lambda}{10}<1 / 5 \text { and } \\
\operatorname{Pr}\left[S_{P}>0\right] & >\frac{\mathbb{E}\left[S_{P}\right]^{2}}{\mathbb{E}\left[S_{P}^{2}\right]}>\frac{1}{1+\lambda}>1 / 2 .
\end{aligned}
$$

By a union bound, we have that for this correct guess of s at least 1 and at most 10 of the solutions in S satisfy (6) with probability at least $1 / 4$.

Let $\boldsymbol{x} \in S$ satisfy (6). Then, there exists a $k=0,1, \ldots, n-1$ such that $\sum_{i=1}^{n} r_{i} x_{i}=u+P k$. (Note that this is equality over the integers, not a modular congruence!) Again we can guess this value k by iterating over all n possibilities. Put $a_{i}^{\prime}=a_{i}+(n t+1) r_{i}$ for $i=1,2, \ldots, n$ and $t^{\prime}=t+(n t+1)(u+P k)$.

Now observe that if S is empty, then none of the n^{2} instances ($\boldsymbol{a}^{\prime}, t^{\prime}$) has solutions with probability 1 . Conversely, if S is nonempty, then at least one of the instances $\left(\boldsymbol{a}^{\prime}, t^{\prime}\right)$ has at least 1 and at most 10 solutions with probability at least $1 / 4$. By construction, $\log t^{\prime}=O(n)$. Since the first stage gives n outputs, the second stage gives n^{3} outputs in total.

6. Parallelization

In this section we prove Theorem 1.4, restated here for convenience.
Theorem 1.4 (restated). The algorithm of Theorem 1.3 can be implemented to run in $O^{*}\left(2^{\tau(\sigma) n} / P\right)$ parallel time on P processors each using $O^{*}\left(2^{\sigma n}\right)$ space, provided $P \leq 2^{(2 \tau(\sigma)-1) n}$.

Proof. We divide the P processors evenly among the roughly $2^{\beta n}$ choices of s^{\prime} in line 7 . If $P \leq 2^{\beta n}$, then this trivially gives full parallelization. Otherwise, fix a choice of s^{\prime}. We have $P^{\prime} \approx P / 2^{\beta n}$ processors available to solve the instance restricted to this value of s^{\prime}.

We now let each of the P^{\prime} available processors solve the left recursive call on line 11 in full, independently of each other. Only in the right recursive call on line 14 do we split up the task and use the P^{\prime} processors to get a factor P^{\prime} speedup, provided that P^{\prime} is not too large (cf. the theorem statement).

Let us write σ_{l} and n_{l} (resp. σ_{r} and n_{r}) for the values of σ and n on the left (resp. right) recursive branch. The left branch takes time $O^{*}\left(2^{\tau\left(\sigma_{l}\right) n_{l}}\right)$. By an inductive argument, if $P^{\prime} \leq 2^{\left(2 \tau\left(\sigma_{r}\right)-1\right) n_{r}}$, then the right branch takes time $O^{*}\left(2^{\tau\left(\sigma_{r}\right) n_{r}} / P^{\prime}\right)$. Indeed, to set up the induction, observe that in the base case when $\sigma \geq 1 / 4$, there is nothing to prove, since the bound on P is then simply 1. The overall time taken is within a constant of the maximum of these because the recursion depth is $O(1)$.

Thus to complete the proof it suffices to establish the inequalities

$$
\begin{align*}
\max \left\{2^{\tau\left(\sigma_{l}\right) n_{l}}, 2^{\tau\left(\sigma_{r}\right) n_{r}} / P^{\prime}\right\} & \leq 2^{\tau(\sigma) n} / P \tag{7}\\
P^{\prime} & \leq 2^{\left(2 \tau\left(\sigma_{r}\right)-1\right) n_{r}} \tag{8}
\end{align*}
$$

Let us start with (7). For the left branch, we have $n_{l}=\alpha n=(1-\tau(\sigma)) n$. Using the assumption that $P \leq 2^{(2 \tau(\sigma)-1) n}$ and the trivial bound $\tau\left(\sigma_{l}\right) \leq 1$, we see that $2^{\tau\left(\sigma_{l}\right) n_{l}} \leq 2^{\tau(\sigma) n} / P$ as desired. For the right branch, we have

$$
\begin{aligned}
n_{r} & =(1-\alpha) n=\tau(\sigma) n, \\
\tau\left(\sigma_{r}\right) & =\tau(\sigma / \tau(\sigma))=\frac{2 \tau(\sigma)-1+\sigma}{\tau(\sigma)},
\end{aligned}
$$

where the last step uses Proposition 3.6. Thus,

$$
\tau\left(\sigma_{r}\right) n_{r}=(2 \tau(\sigma)-1+\sigma) n
$$

and hence,

$$
2^{\tau\left(\sigma_{r}\right) n_{r}} / P^{\prime}=2^{(2 \tau(\sigma)-1+\sigma) n} /\left(P / 2^{(1-\tau(\sigma)-\sigma) n}\right)=2^{\tau(\sigma) n} / P
$$

It remains to establish 8). Because $P \leq 2^{(2 \tau(\sigma)-1) n}$, it suffices to show that

$$
2^{(2 \tau(\sigma)-1) n} / 2^{(1-\tau(\sigma)-\sigma) n} \leq 2^{\left(2 \tau\left(\sigma_{r}\right)-1\right) n_{r}}=2^{(4 \tau(\sigma)-2+2 \sigma-\tau(\sigma)) n} .
$$

Canceling exponents on the left and on the right, everything cancels except for one of the two σn 's on the right.

References

[1] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for hard knapsacks. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 364-385. Springer, 2011.
[2] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Computing the Tutte polynomial in vertex-exponential time. In $F O C S$, pages 677-686. IEEE Computer Society, 2008.
[3] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 719-740. Springer, 2012.
[4] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack problem. J. ACM, 21(2):277-292, April 1974.
[5] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 235-256. Springer, 2010.
[6] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Complexity of Computer Computations, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972.
[7] Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Homomorphic hashing for sparse coefficient extraction. In Dimitrios M. Thilikos and Gerhard J. Woeginger, editors, IPEC, volume 7535 of Lecture Notes in Computer Science, pages 147-158. Springer, 2012.
[8] Mikko Koivisto and Pekka Parviainen. A space-time tradeoff for permutation problems. In Moses Charikar, editor, SODA, pages 484-492. SIAM, 2010.
[9] Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Leonard J. Schulman, editor, $S T O C$, pages 321-330. ACM, 2010.
[10] Richard Schroeppel and Adi Shamir. A $T=O\left(2^{n / 2}\right), S=O\left(2^{n / 4}\right)$ algorithm for certain NP-complete problems. SIAM J. Comput., 10(3):456-464, 1981.
[11] Gerhard J. Woeginger. Open problems around exact algorithms. Discrete Applied Mathematics, 156(3):397-405, 2008.

Per Austrin, Aalto Science Institute, Aalto University, Finland and KTH Royal Institute of Technology, Sweden

Petteri Kaski, HiIt \& Department of Information and Computer Science, Aalto University, Finland

Mikko Koivisto, HiIt \& Department of Computer Science, University of Helsinki, Finland

Jussi Määttä, Hift \& Department of Information and Computer Science, Aalto University, Finland

[^0]: P.A. supported by the Aalto Science Institute, the Swedish Research Council grant 621-20124546, and ERC Advanced Investigator grant 226203. P.K. supported by the Academy of Finland, grants 252083 and 256287. M.K. supported by the Academy of Finland, grants 125637, 218153, and 255675 .

[^1]: ${ }^{1}$ The converse is not true though: it can be that $B(v)$ happens but a bailout happens in one (or both) of the two subtrees of v, causing the recursive call associated with node v to not find all the solutions to $\left(\boldsymbol{a}_{v}, t_{v}, M_{v}\right)$ and thereby not bail out.

