Abstract
We present a linear-time algorithm to compute a decomposition scheme for graphs G that have a set X ⊆ V(G), called a treewidth-modulator, such that the treewidth of G − X is bounded by a constant. Our decomposition, called a protrusion decomposition, is the cornerstone in obtaining the following two main results. Our first result is that any parameterized graph problem (with parameter k) that has finite integer index and such that positive instances have a treewidth-modulator of size O(k) admits a linear kernel on the class of H-topological-minor-free graphs, for any fixed graph H. This result partially extends previous meta-theorems on the existence of linear kernels on graphs of bounded genus and H-minor-free graphs.
Let \(\mathcal{F}\) be a fixed finite family of graphs containing at least one planar graph. Given an n-vertex graph G and a non-negative integer k, Planar \(\mathcal{F}\)- Deletion asks whether G has a set X ⊆ V(G) such that \(|X|\leqslant k\) and G − X is H-minor-free for every \(H\in \mathcal{F}\). As our second application, we present the first single-exponential algorithm to solve Planar \(\mathcal{F}\)- Deletion. Namely, our algorithm runs in time 2O(k)·n 2, which is asymptotically optimal with respect to k. So far, single-exponential algorithms were only known for special cases of the family \(\mathcal{F}\).
This article replaces and extends the results of [CoRR, abs/1201.2780, 2012]. Research funded by DFG-Project RO 927/12-1 “Theoretical and Practical Aspects of Kernelization”, ANR project AGAPE (ANR-09-BLAN-0159), and the Languedoc-Roussillon Project “Chercheur d’avenir” KERNEL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for Dominating Set. Journal of the ACM 51, 363–384 (2004)
Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)
Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)
Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: Proc. of 50th FOCS, pp. 629–638. IEEE Computer Society (2009)
Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs of small treewidth. Information and Computation 167(2), 86–119 (2001)
Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. Journal of Computer and System Sciences 74(7), 1188–1198 (2008)
Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: An improved FPT algorithm and quadratic kernel for pathwidth one vertex deletion. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 95–106. Springer, Heidelberg (2010)
Dehne, F., Fellows, M., Langston, M.A., Rosamond, F., Stevens, K.: An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)
Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
Dinneen, M.: Too many minor order obstructions. Journal of Universal Computer Science 3(11), 1199–1206 (1997)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. Journal of the ACM 35, 727–739 (1988)
Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden minors: Approximation and kernelization. In: STACS 28th. LIPIcs, vol. 9, pp. 189–200. Schloss Dagstuhl–Leibniz-Zentrum fu (2011)̈r Informatik (2011)
Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar \(\mathcal{F}\)-Deletion: Approximation and Optimal FPT Algorithms. In: Proc. of 53rd FOCS, pp. 470–479. IEEE Computer Society (2012)
Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proc. of 21st SODA, pp. 503–510. SIAM (2010)
Fomin, F.V., Oum, S., Thilikos, D.M.: Rank-width and tree-width of H-minor-free graphs. European Journal of Combinatorics 31(7), 1617–1628 (2010)
Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer and System Sciences 72(8), 1386–1396 (2006)
Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)
Joret, G., Paul, C., Sau, I., Saurabh, S., Thomassé, S.: Hitting and harvesting pumpkins. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 394–407. Springer, Heidelberg (2011)
Kim, E.J., Paul, C., Philip, G.: A single-exponential FPT-algorithm for K 4-minor cover problem. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 119–130. Springer, Heidelberg (2012)
Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler parameterized algorithm for OCT. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 380–384. Springer, Heidelberg (2009)
Philip, G., Raman, V., Villanger, Y.: A quartic kernel for Pathwidth-One Vertex Deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 196–207. Springer, Heidelberg (2010)
Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)
Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63, 65–110 (1995)
Thomason, A.: The extremal function for complete minors. Journal of Combinatorial Theory, Series B 81(2), 318–338 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, E.J. et al. (2013). Linear Kernels and Single-Exponential Algorithms via Protrusion Decompositions. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)