Abstract
We say that a graph with n vertices is c-Ramsey if it does not contain either a clique or an independent set of size c logn. We define a CNF formula which expresses this property for a graph G. We show a superpolynomial lower bound on the length of resolution proofs that G is c-Ramsey, for every graph G. Our proof makes use of the fact that every Ramsey graph must contain a large subgraph with some of the statistical properties of the random graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. Journal of Combinatorial Theory, Series A 29(3), 354–360 (1980)
Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. J. Comput. Syst. Sci. 74(3), 323–334 (2008)
Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and bounded-width resolution. J. Artif. Intell. Res. (JAIR) 40, 353–373 (2011)
Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 517–526 (1999)
Beyersdorff, O., Galesi, N., Lauria, M., Razborov, A.A.: Parameterized bounded-depth frege is not optimal. ACM Trans. Comput. Theory 4(3), 7:1–7:16 (2012)
Blake, A.: Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago (1938)
Bohman, T., Keevash, P.: The early evolution of the h-free process. Inventiones Mathematicae 181(2), 291–336 (2010)
Carlucci, L., Galesi, N., Lauria, M.: Paris-harrington tautologies. In: Proc. of IEEE 26th Conference on Computational Complexity, pp. 93–103 (2011)
Chung, F.R.K., Erdős, P., Graham, R.L.: Erdős on Graphs: His Legacy of Unsolved Problems, 1st edn. AK Peters, Ltd. (January 1998)
Conlon, D.: A new upper bound for diagonal ramsey numbers. Annals of Mathematics 170(2), 941–960 (2009)
Dantchev, S., Martin, B., Szeider, S.: Parameterized proof complexity. Computational Complexity 20, 51–85 (2011), doi:10.1007/s00037-010-0001-1
Erdös, P.: Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53, 292–294 (1947)
Erdős, P., Szekeres, G.: A combinatorial problem in geometry. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 49–56. Birkhäuser, Boston (1987)
Kim, J.H.: The Ramsey number r(3,t) has order of magnitude t 2/log(t). Random Structures and Algorithms 7(3), 173–208 (1995)
Krajicek, J.: Tautologies from pseudo-random generators. Bulletin of Symbolic Logic, 197–212 (2001)
Krajíček, J.: Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic 59(1), 73–86 (1994)
Krajíček, J.: A note on propositional proof complexity of some Ramsey-type statements. Archive for Mathematical Logic 50, 245–255 (2011), doi:10.1007/s00153-010-0212-9
Krishnamurthy, B., Moll, R.N.: Examples of hard tautologies in the propositional calculus. In: STOC 1981, 13th ACM Symposium on Th. of Computing, pp. 28–37 (1981)
Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning sat solvers as resolution engines. Artificial Intelligence 175(2), 512–525 (2011)
Prömel, H., Rödl, V.: Non-ramsey graphs are c log n-universal. Journal of Combinatorial Theory, Series A 88(2), 379–384 (1999)
Pudlák, P.: Ramsey’s theorem in Bounded Arithmetic. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 308–317. Springer, Heidelberg (1991)
Pudlák, P.: A lower bound on the size of resolution proofs of the Ramsey theorem. Inf. Process. Lett. 112(14-15), 610–611 (2012)
Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Mathematics 20, 69–76 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lauria, M., Pudlák, P., Rödl, V., Thapen, N. (2013). The Complexity of Proving That a Graph Is Ramsey. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)