Abstract
We consider connectivity-augmentation problems in a setting where each potential new edge has a nonnegative cost associated with it, and the task is to achieve a certain connectivity target with at most p new edges of minimum total cost. The main result is that the minimum cost augmentation of edge-connectivity from k − 1 to k with at most p new edges is fixed-parameter tractable parameterized by p and admits a polynomial kernel. We also prove the fixed-parameter tractability of increasing edge-connectivity from 0 to 2, and increasing node-connectivity from 1 to 2.
Full version available on Arxiv:1304.6593. The first author was supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized complexity and the search for tight complexity results,” reference 280152.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algorithm for the generalized steiner problem on networks. SIAM Journal on Computing 24(3), 440–456 (1995)
Cheriyan, J., Végh, L.A.: Approximating minimum-cost k-node connected subgraphs via independence-free graphs. arXiv preprint arXiv:1212.3981 (2012)
Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the minimum-cost k-vertex connected subgraph. SIAM J. Comput. 32(4), 1050–1055 (2003)
Dinits, E., Karzanov, A., Lomonosov, M.: On the structure of a family of minimal weighted cuts in graphs. In: Fridman, A. (ed.) Studies in Discrete Mathematics, Nauka, Moscow, pp. 290–306 (1976) (in Russian)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)
Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discret. Math. 5(1), 25–53 (1992)
Frank, A.: Connections in combinatorial optimization. Oxford lecture series in mathematics and its applications, vol. 38. Oxford Univ. Pr. (2011)
Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. Journal of Combinatorial Theory, Series B 65(1), 73–110 (1995)
Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)
Goemans, M., Williamson, D.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)
Guo, J., Uhlmann, J.: Kernelization and complexity results for connectivity augmentation problems. Networks 56(2), 131–142 (2010)
Hsu, T.: On four-connecting a triconnected graph. Journal of Algorithms 35(2), 202–234 (2000)
Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation. Journal of Combinatorial Theory, Series B 94(1), 31–77 (2005)
Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)
Jordán, T.: On the optimal vertex-connectivity augmentation. Journal of Combinatorial Theory, Series B 63(1), 8–20 (1995)
Kortsarz, G., Nutov, Z.: Approximating node connectivity problems via set covers. Algorithmica 37(2), 75–92 (2003)
Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T. (ed.) Handbook on Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC, London (2007)
Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – preprocessing with a guarantee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)
Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Optimization 8(1), 110–128 (2011)
Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Applied Mathematics 126(1), 83–113 (2003)
Nesetril, J., Milková, E., Nesetrilová, H.: Otakar Boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics 233(1-3), 3–36 (2001)
Végh, L.A.: Augmenting undirected node-connectivity by one. SIAM Journal on Discrete Mathematics 25(2), 695–718 (2011)
Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35(1), 96–144 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marx, D., Végh, L.A. (2013). Fixed-Parameter Algorithms for Minimum Cost Edge-Connectivity Augmentation. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)