Skip to main content

Fixed-Parameter Algorithms for Minimum Cost Edge-Connectivity Augmentation

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

We consider connectivity-augmentation problems in a setting where each potential new edge has a nonnegative cost associated with it, and the task is to achieve a certain connectivity target with at most p new edges of minimum total cost. The main result is that the minimum cost augmentation of edge-connectivity from k − 1 to k with at most p new edges is fixed-parameter tractable parameterized by p and admits a polynomial kernel. We also prove the fixed-parameter tractability of increasing edge-connectivity from 0 to 2, and increasing node-connectivity from 1 to 2.

Full version available on Arxiv:1304.6593. The first author was supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized complexity and the search for tight complexity results,” reference 280152.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algorithm for the generalized steiner problem on networks. SIAM Journal on Computing 24(3), 440–456 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheriyan, J., Végh, L.A.: Approximating minimum-cost k-node connected subgraphs via independence-free graphs. arXiv preprint arXiv:1212.3981 (2012)

    Google Scholar 

  3. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the minimum-cost k-vertex connected subgraph. SIAM J. Comput. 32(4), 1050–1055 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dinits, E., Karzanov, A., Lomonosov, M.: On the structure of a family of minimal weighted cuts in graphs. In: Fridman, A. (ed.) Studies in Discrete Mathematics, Nauka, Moscow, pp. 290–306 (1976) (in Russian)

    Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  Google Scholar 

  6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    Google Scholar 

  7. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discret. Math. 5(1), 25–53 (1992)

    Article  MATH  Google Scholar 

  8. Frank, A.: Connections in combinatorial optimization. Oxford lecture series in mathematics and its applications, vol. 38. Oxford Univ. Pr. (2011)

    Google Scholar 

  9. Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. Journal of Combinatorial Theory, Series B 65(1), 73–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goemans, M., Williamson, D.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, J., Uhlmann, J.: Kernelization and complexity results for connectivity augmentation problems. Networks 56(2), 131–142 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Hsu, T.: On four-connecting a triconnected graph. Journal of Algorithms 35(2), 202–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation. Journal of Combinatorial Theory, Series B 94(1), 31–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jordán, T.: On the optimal vertex-connectivity augmentation. Journal of Combinatorial Theory, Series B 63(1), 8–20 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kortsarz, G., Nutov, Z.: Approximating node connectivity problems via set covers. Algorithmica 37(2), 75–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T. (ed.) Handbook on Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC, London (2007)

    Google Scholar 

  19. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – preprocessing with a guarantee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Optimization 8(1), 110–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Applied Mathematics 126(1), 83–113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nesetril, J., Milková, E., Nesetrilová, H.: Otakar Boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics 233(1-3), 3–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Végh, L.A.: Augmenting undirected node-connectivity by one. SIAM Journal on Discrete Mathematics 25(2), 695–718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35(1), 96–144 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marx, D., Végh, L.A. (2013). Fixed-Parameter Algorithms for Minimum Cost Edge-Connectivity Augmentation. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics