Skip to main content

No-Wait Flowshop Scheduling Is as Hard as Asymmetric Traveling Salesman Problem

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

  • 1726 Accesses

Abstract

In this paper we study the classical no-wait flowshop scheduling problem with makespan objective (F|no − wait|C max in the standard three-field notation). This problem is well-known to be a special case of the asymmetric traveling salesman problem (ATSP) and as such has an approximation algorithm with logarithmic performance guarantee. In this work we show a reverse connection, we show that any polynomial time α-approximation algorithm for the no-wait flowshop scheduling problem with makespan objective implies the existence of a polynomial-time α(1 + ε)-approximation algorithm for the ATSP, for any ε > 0. This in turn implies that all non-approximability results for the ATSP (current or future) will carry over to its special case. In particular, it follows that no-wait flowshop problem is APX-hard, which is the first non-approximability result for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asadpour, A., Goemans, M.X., Madry, A., Oveis Gharan, S., Saberi, A.: An O(logn/loglogn)-approximation algorithm for the asymmetric traveling salesman problem. In: SODA, pp. 379–389 (2010)

    Google Scholar 

  2. Bläser, M.: A new approximation algorithm for the asymmetric TSP with triangle inequality. ACM Transactions on Algorithms 4(4) (2008)

    Google Scholar 

  3. Feige, U., Singh, M.: Improved approximation ratios for traveling salesperson tours and paths in directed graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX and RANDOM 2007. LNCS, vol. 4627, pp. 104–118. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12(1), 23–39 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gilmore, P., Gomory, R.: Sequencing a one state-variable machine: A solvable case of the traveling salesman problem. Operations Research (12), 655–679 (1964)

    Google Scholar 

  6. Hall, N., Sriskandarajah, C.: A survey of machine scheduling problems with blocking and no-wait in process. Operations Research (44), 510–525 (1996)

    Google Scholar 

  7. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of the ACM 52(4), 602–626 (2005)

    Article  MathSciNet  Google Scholar 

  8. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. CoRR abs/1303.6437 (2013)

    Google Scholar 

  9. Lawler, E., Lenstra, J., Rinnooy Kan, A., Shmoys, D.: Sequencing and scheduling: Algorithms and complexity. In: Graves, S., Rinnooy Kan, A., Zipkin, P. (eds.) Handbooks in Operations Research and Management Science. Logistics of Production and Inventory, vol. 4, pp. 445–522. North-Holland, Amsterdam (1993)

    Google Scholar 

  10. Papadimitriou, C.H., Kanellakis, P.C.: Flowshop scheduling with limited temporary storage. Journal of the ACM 27(3), 533–549 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Piehler, J.: Ein Beitrag zum Reihenfolgeproblem. Unternehmensforschung (4), 138–142 (1960)

    Google Scholar 

  12. Röck, H.: The three-machine no-wait flow shop is NP-complete. Journal of the ACM 31(2), 336–345 (1984)

    Article  MATH  Google Scholar 

  13. Röck, H., Schmidt, G.: Machine aggregation heuristics in shop-scheduling. Methods of Operations Research (45), 303–314 (1983)

    Google Scholar 

  14. Spieksma, F.C.R., Woeginger, G.J.: The no-wait flow-shop paradox. Oper. Res. Lett. 33(6), 603–608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sviridenko, M.: Makespan minimization in no-wait flow shops: A polynomial time approximation scheme. SIAM Journal of Discrete Mathematics 16(2), 313–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press (2011)

    Google Scholar 

  17. Wismer, D.A.: Solution of the flow shop scheduling problem with no intermediate queues. Operations Research (20), 689–697 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mucha, M., Sviridenko, M. (2013). No-Wait Flowshop Scheduling Is as Hard as Asymmetric Traveling Salesman Problem. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics