Skip to main content

A Composition Theorem for the Fourier Entropy-Influence Conjecture

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

  • 1726 Accesses

Abstract

The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [1] seeks to relate two fundamental measures of Boolean function complexity: it states that H[f] ≤ C· Inf[f] holds for every Boolean function f, where H[f] denotes the spectral entropy of f, Inf[f] is its total influence, and C > 0 is a universal constant. Despite significant interest in the conjecture it has only been shown to hold for a few classes of Boolean functions.

Our main result is a composition theorem for the FEI conjecture. We show that if g 1,…,g k are functions over disjoint sets of variables satisfying the conjecture, and if the Fourier transform of F taken with respect to the product distribution with biases E[g 1],..., E[g k ] satisfies the conjecture, then their composition F(g 1(x 1),…,g k (x k)) satisfies the conjecture. As an application we show that the FEI conjecture holds for read-once formulas over arbitrary gates of bounded arity, extending a recent result [2] which proved it for read-once decision trees. Our techniques also yield an explicit function with the largest known ratio of C ≥ 6.278 between H[f] and Inf[f], improving on the previous lower bound of 4.615.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proceedings of the American Mathematical Society 124(10), 2993–3002 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. O’Donnell, R., Wright, J., Zhou, Y.: The Fourier Entropy-Influence Conjecture for certain classes of boolean functions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 330–341. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Kalai, G.: The entropy/influence conjecture. Posted on Terence Tao’s What’s new blog (2007), http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/

  4. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, pp. 68–80 (1988)

    Google Scholar 

  5. Mansour, Y.: Learning Boolean functions via the Fourier Transform. In: Roychowdhury, V., Siu, K.Y., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 391–424. Kluwer Academic Publishers (1994)

    Google Scholar 

  6. Gopalan, P., Kalai, A., Klivans, A.: Agnostically learning decision trees. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 527–536 (2008)

    Google Scholar 

  7. Gopalan, P., Kalai, A., Klivans, A.: A query algorithm for agnostically learning DNF? In: Proceedings of the 21st Annual Conference on Learning Theory, pp. 515–516 (2008)

    Google Scholar 

  8. De, A., Etesami, O., Trevisan, L., Tulsiani, M.: Improved pseudorandom generators for depth 2 circuits. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 504–517. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Friedgut, E.: Boolean functions with low average sensitivity depend on few coordinates. Combinatorica 18(1), 27–36 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Servedio, R.: On learning monotone DNF under product distributions. Information and Computation 193(1), 57–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. O’Donnell, R., Servedio, R.: Learning monotone decision trees in polynomial time. SIAM Journal on Computing 37(3), 827–844 (2008)

    Article  MathSciNet  Google Scholar 

  12. Klivans, A., Lee, H., Wan, A.: Mansour’s Conjecture is true for random DNF formulas. In: Proceedings of the 23rd Annual Conference on Learning Theory, pp. 368–380 (2010)

    Google Scholar 

  13. Heiman, R., Newman, I., Wigderson, A.: On read-once threshold formulae and their randomized decision in tree complexity. Theor. Comput. Sci. 107(1), 63–76 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keller, N., Mossel, E., Schlank, T.: A note on the entropy/influence conjecture. Discrete Mathematics 312(22), 3364–3372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

O’Donnell, R., Tan, LY. (2013). A Composition Theorem for the Fourier Entropy-Influence Conjecture. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics