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Abstract. Formal methods have been very successful in analyzing security pro-
tocols for reachability properties such as secrecy or authentication. In contrast,
there are very few results for equivalence-based properties, crucial for studying
e.g. privacy-like properties such as anonymity or vote secrecy.
We study the problem of checking equivalence of security protocols for an un-
bounded number of sessions. Since replication leads very quickly to undecidabil-
ity (even in the simple case of secrecy), we focus on a limited fragment of pro-
tocols (standard primitives but pairs, one variable per protocol’s rules) for which
the secrecy preservation problem is known to be decidable. Surprisingly, this frag-
ment turns out to be undecidable for equivalence. Then, restricting our attention
to deterministic protocols, we propose the first decidability result for checking
equivalence of protocols for an unbounded number of sessions. This result is ob-
tained through a characterization of equivalence of protocols in terms of equality
of languages of (generalized, real-time) deterministic pushdown automata.

1 Introduction

Formal methods have been successfully applied for rigorously analyzing security pro-
tocols. In particular, many algorithms and tools (see [13, 4, 9, 2, 11] to cite a few) have
been designed to automatically find flaws in protocols or prove security. Most of these
results focus on reachability properties such as authentication or secrecy: for any execu-
tion of the protocol, an attacker should never learn a secret (secrecy property) or make
Alice think she’s talking to Bob while Bob did not engage a conversation with her (au-
thentication property). However, privacy properties such as vote secrecy, anonymity, or
untraceability cannot be expressed as such. They are instead defined as indistinguisha-
bility properties in [1, 6]. For example, Alice’s identity remains private if an attacker
cannot distinguish a session where Alice is talking from a session where Bob is talking.

Studying indistinguishability properties for security protocols amounts into check-
ing a behavioral equivalence between processes. Processes represent protocols and are
specified in some process algebras such as CSP or the pi-calculus, except that mes-
sages are no longer atomic actions but terms, in order to faithfully represent crypto-
graphic messages. Of course, considering terms instead of atomic actions considerably
increases the difficulty of checking equivalence. As a matter of fact, there are just a few
results for checking equivalence of processes that manipulate terms.
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– Based on a procedure developed by M. Baudet [3], it has been shown that trace
equivalence is decidable for deterministic processes with no else branches, and
for a family of equational theories that captures most standard primitives [10]. A
simplified proof of [3] has been proposed by Y. Chevalier and M. Rusinowitch [8].

– A. Tiu and J. Dawson [17] have designed and implemented a procedure for open
bisimulation, a notion of equivalence stronger than the standard notion of trace
equivalence. This procedure only works for a limited class of processes.

– V. Cheval et al. [7] have proposed and implemented a procedure for trace equiva-
lence, and for a quite general class of processes. They consider non deterministic
processes that use standard primitives, and that may involve else branches.

However, these decidability results analyse equivalence for a bounded number of ses-
sions only, that is assuming that protocols are executed a limited number of times. This
is of course a strong limitation. Even if no flaw is found when a protocol is executed n
times, there is absolutely no guarantee that the protocol remains secure when it is exe-
cuted n+1 times. And actually, the existing tools for a bounded number of sessions can
only analyse protocols for a very limited number of sessions, typically 2 or 3. Another
approach consists in implementing a procedure that is not guaranteed to terminate. This
is in particular the case of ProVerif [4], a well-established tool for checking security of
protocols. ProVerif is able to check equivalence although it does not always succeed [5].
Of course, Proverif does not correspond to any decidability result.

Our contribution. We study the decidability of equivalence of security protocols for an
unbounded number of sessions. Even in the case of reachability properties such as se-
crecy, the problem is undecidable in general. We therefore focus on a class of protocols
for which secrecy is decidable [9]. This class typically assumes that each protocol rule
manipulates at most one variable. Surprisingly, even a fragment of this class (with only
symmetric encryption) turns out to be undecidable for equivalence properties. We con-
sequently further assume our protocols to be deterministic (that is, given an input, there
is at most one possible output). We show that equivalence is decidable for an unbounded
number of sessions and for protocols with standard primitives but pairs. Interestingly,
we show that checking for equivalence of protocols actually amounts into checking
equality of languages of deterministic pushdown automata. The decidability of equality
of languages of deterministic pushdown automata is a difficult problem, shown to be
decidable at Icalp in 1997 [14]. We actually characterize equivalence of protocols in
terms of equivalence of deterministic generalized real-time pushdown automata, that is
deterministic pushdown automata with no epsilon-transition but such that the automata
may unstack several symbols at a time. More precisely, we show how to associate to a
process P an automata AP such that two processes are equivalent if, and only if, their
corresponding automata yield the same language and, reciprocally, we show how to as-
sociate to an automata A a process PA such that two automata yield the same language
if, and only if, their corresponding processes are equivalent, that is:

P ≈ Q ⇔ L(AP ) = L(AQ), and L(A) = L(B) ⇔ PA ≈ PB.

Therefore, checking for equivalence of protocols is as difficult as checking equiva-
lence of deterministic generalized real-time pushdown automata.
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2 Model for security protocols

Security protocols are modeled through a process algebra that manipulates terms.

2.1 Syntax

Term algebra. As usual, messages are represented by terms. More specifically, we con-
sider a sorted signature with six sorts rand, key, msg, SimKey, PrivKey and PubKey
that represent respectively random numbers, keys, messages, symmetric keys, private
keys and public keys. We assume that msg subsumes the five other sorts, key subsumes
SimKey, PrivKey and PubKey. We consider six function symbols senc and sdec, aenc
and adec, sign and check that represent symmetric, asymmetric encryption and decryp-
tion as well as signatures. Since we are interested in the analysis of indistinguishability
properties, we consider randomized primitives:

senc : msg × SimKey × rand → msg sdec : msg × SimKey → msg
aenc : msg × PubKey × rand → msg adec : msg × PrivKey → msg
sign : msg × PrivKey × rand → msg check : msg × PubKey → msg

We further assume an infinite set Σ0 of constant symbols of sort key or msg, an
infinite set Ch of constant symbols of sort channel, two infinite sets of variables X ,W ,
and an infinite setN = Npub ]Nprv of names of sort rand:Npub represents the random
numbers drawn by the attacker whileNprv represents the random numbers drawn by the
protocol’s participants. As usual, terms are defined as names, variables, and function
symbols applied to other terms. We denote by T (F ,N ,X ) the set of terms built on
function symbols in F , names in N , and variables in X . We simply write T (F ,N )
when X = ∅. We consider three particular signatures:

Σpub = {senc, sdec, aenc, adec, sign, check, start}
Σ+ = Σpub ∪Σ0 Σ = {senc, aenc, sign, start} ∪Σ0

where start /∈ Σ0 is a constant symbol of sort msg. Σpub represents the functions/data
available to the attacker, Σ+ is the most general signature, while Σ models actual
messages (with no failed computation). We add a bijection between elements of sort
PrivKey and PubKey. If k is a constant of sort PrivKey, k−1 will denotes its image
by this function, called inverse. We will write the inverse function the same, so that
(k−1)−1 = k. To keep homogeneous notations, we will extend this function to sym-
metric keys: if k is of sort SimKey, then k−1 = k. The relation between encryption and
decryption is represented through the following rewriting rules, yielding a convergent
rewrite system:

sdec(senc(x, y, z), y) → x adec(aenc(x, y, z), y−1) → x
check(sign(x, y, z), y−1) → x

This rule models the fact that the decryption of a ciphertext will return the associated
plaintext when the right key is used to perform decryption. We denote by t↓ the normal
form of a term t ∈ T (Σ+,N ,X ).

Example 1. The term m = senc(s, k, r) represents an encryption of the constant s with
the key k using the random r ∈ N , whereas t = sdec(m, k) models the application of
the decryption algorithm on m using k. We have that t↓ = s.
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An attacker may build his own messages by applying functions to terms he already
knows. Formally, a computation done by the attacker is modeled by a recipe. i.e. a term
in T (Σpub,Npub,W). The variables in W intuitively refer to variables used to store
messages learnt by the attacker.

Process algebra. The intended behavior of a protocol can be modelled by a process
defined by the following grammar where u ∈ T (Σ,N ,X ), n ∈ N , and c ∈ Ch:

P,Q := 0 | in(c, u).P | out(c, u).P | (P | Q) | !P | new n.P

The process “in(c, u).P ” expects a message m of the form u on channel c and then
behaves like Pθ where θ is a substitution such that m = uθ. The process “out(c, u).P ”
emits u on channel c, and then behaves like P . The variables that occur in u will be
instantiated when the evaluation will take place. The process P | Q runs P and Q
in parallel. The process !P executes P some arbitrary number of times. The process
new n.P invents a new name n and continues as P .

Sometimes, we will omit the null process. We write fv(P ) for the set of free vari-
ables that occur in P , i.e. the set of variables that are not in the scope of an input. A
protocol is a ground process, i.e. a process P such that fv(P ) = ∅.

Example 2. For the sake of illustration, we consider a naive protocol, where A sends a
value v (e.g. a vote) to B, encrypted by a short-term key exchanged through a server.

1. A → S : senc(kAB , kAS , rA)
2. S → B : senc(kAB , kBS , rS)
3. A → B : senc(v, kAB , r)

The agent A sends a symmetric key kAB encrypted with the key kAS (using a fresh
random number rA). The server answers to this request by decrypting this message and
encrypting it with kBS . The agent A can now send his vote v encrypted with kAB .

The role of A is modeled by a process PA(v) while the role of S is modeled by PS .
The role of B (which does not output anything) is omitted for concision.

PA(v) def= ! in(cA, start).new rA.out(cA, senc(kAB , kAS , rA)) (1)
| ! in(c′A, start).new r.out(cA, senc(v, kAB , r)) (2)

PS
def= ! in(cS , senc(x, kAS , z)).new rS .out(cS , senc(x, kBS , rS)) (3)
| ! in(c′S , senc(x, kAS , z)).new rS .out(c′S , senc(x, kCS , rS)) (4)

where cA, c′A, cS , c′S are constants of sort channel, kAB , kAS , kBS , and kCS are (pri-
vate) constants in Σ0 of sort SimKey, whereas rA, rS , r are names of sort rand, and x
(resp. z) is a variable of sort msg (resp. rand).

Intuitively, PA(v) sends kAB encrypted by kAS to the server (branch 1), and then
her vote encrypted by kAB (branch 2). The process PS models the server, answering
both requests from A to B (branch 3), as well as requests from A to C (branch 4).
More generally the server answers requests from any agent to any agent but only two
cases are considered here, again for concision. The whole protocol is given by P (v),
where PA(v) and PS evolve in parallel and additionally, the secret key kCS is sent in
clear, to model the fact that the attacker may learn keys of some corrupted agents:

P (v) def= PA(v) | PS | ! in(c, start).out(c, kCS)
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2.2 Semantics

A configuration of a protocol is a pair (P;σ) where:

– P is a multiset of processes. We often write P ∪ P , or P | P , instead of {P} ∪ P .
– σ = {w1 . m1, . . . ,wn . mn} is a frame, i.e. a substitution where w1, . . . ,wn are

variables in W , and m1, . . . ,mn are terms in T (Σ,N ). Those terms represent the
messages that are known by the attacker.

The operational semantics of protocol is defined by the relation α−→ over configurations.
For sake of simplicity, we often write P instead of (P ; ∅).

(in(c, u).P ∪ P;σ)
in(c,R)−−−−→ (Pθ ∪ P;σ)

where R is a recipe such that Rσ↓ ∈ T (Σ,N ) and Rσ↓ = uθ for some θ

(out(c, u).P ∪ P;σ)
out(c,wi+1)−−−−−−−→ (P ∪ P;σ ∪ {wi+1 . u})

where i is the number of elements in σ

(!P ∪ P;σ) τ−→ (P ∪ !P ∪ P;σ)

(new n.P ∪ P;σ) τ−→ (P{n′
/n} ∪ P;σ) where n′ is a fresh name in Nprv

A process may input any term that an attacker can build (rule IN). The process
out(c, u).P outputs u (which is stored in the attacker’s knowledge) and then behaves
like P . The two remaining rules are unobservable (τ action) from the point of view of
the attacker. The relation w−→ between configurations (where w is a sequence of actions)
is defined in a usual way. Given a sequence of observable actions w, we write K

w==⇒ K ′

when there exists w′ such that K
w′

−→ K ′ and w is obtained from w′ by erasing all
occurrences of τ . For every configuration K, we define its set of traces as follows:

trace(K) = {(tr, σ) |K tr==⇒ (P;σ) for some configuration (P;σ)}.

Example 3. Going back to the protocol introduced in Example 2, consider the following
scenario: (i) the corrupted agent C discloses his secret key kCS ; (ii) the agent A initiates
a session with B, and for this she sends a request to the server S; (iii) the attacker
intercepts this message and sends it to S as a request coming from A to establish a key
with C. Instead of answering to this request with senc(kAB , kBS , rS), the server sends
senc(kAB , kCS , rS), and the attacker will learn kAB . More formally, we have that:

K0
def= (P (v); ∅) in(c,start).out(c,w1).in(cA,start).out(cA,w2).in(c

′
S ,w2).out(c′

S ,w3).========================================⇒ (P (v);σ)
where σ = {w1.kCS , w2.senc(kAB , kAS , rA), w3.senc(kAB , kCS , rS)}, and rA, rS

are (fresh) names in Nprv. In this execution trace, first the key kCS is sent after having
called the corresponding process. Then, branches (1) and (4) of P (v) are triggered.

2.3 Trace equivalence

Intuitively, two processes are equivalent if they cannot be distinguished by any attacker.
Trace equivalence can be used to formalise many interesting security properties, in
particular privacy-type properties, such as those studied for instance in [1, 6]. We first
introduce a notion of intruder’s knowledge well-suited to cryptographic primitives for
which the success of decrypting or checking a signature is visible.
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Definition 1. Two frames σ1 and σ2 are statically equivalent, σ1 ∼ σ2, when we have
that dom(σ1) = dom(σ2), and:

– for any recipe R, Rσ1↓ ∈ T (Σ,N ) if, and only if, Rσ2↓ ∈ T (Σ,N ); and
– for all recipes R1 and R2 such that R1σ1↓, R2σ1↓ ∈ T (Σ,N ), we have that

R1σ1↓ = R2σ1↓ if, and only if, R1σ2↓ = R2σ2↓.

Intuitively, two frames are equivalent if an attacker cannot see the difference be-
tween the two situations they represent: if some computation fails in σ1 it should fail
in σ2 as well, and σ1 and σ2 should satisfy the same equalities.

Example 4. Assume some agent publishes her vote encrypted. The possible values for
the votes are typically public. Therefore the question is not whether an attacker may
know the value of the vote (that he knows anyway) but instead, whether he may distin-
guish between two executions where A votes differently. Consider the two frames:

σi
def= {w4 . v0, w5 . v1, w6 . senc(vi, kAB , r)} with i ∈ {0, 1}

where v0, v1 ∈ Σ0, and r ∈ Nprv. We have that σ0 ∼ σ1. Intuitively, there is no test that
allows the attacker to distinguish the two frames since the key kAB is not available. In
this scenario, the vote vi remains private. Now, consider the frames σ′i = σ ∪ σi with
i ∈ {0, 1} and σ as defined in Example 3. We have that σ′0 6∼ σ′1. Indeed, consider the
recipes R1 = sdec(w6, sdec(w3,w1)) and R2 = w4. We have that R1σ

′
0↓ = R2σ

′
0↓ =

v0, whereas R1σ
′
1↓ = v1 and R2σ

′
1↓ = v0. Intuitively, an attacker can learn kAB and

then compare the encrypted vote to the values v0 and v1.

Intuitively, two processes are trace equivalent if, however they behave, the resulting
sequences of messages observed by the attacker are in static equivalence.

Definition 2. Let P and Q be two protocols. We have that P v Q if for every (tr, σ) ∈
trace(P ), there exists (tr′, σ′) ∈ trace(Q) such that tr = tr′ and σ ∼ σ′. They are trace
equivalent, written P ≈ Q, if P v Q and Q v P .

Example 5. Continuing Example 2, our naive protocol is secure if the vote of A remains
private. This is typically expressed by P (v0) | Q ≈ P (v1) | Q. An attacker should not
distinguish between two instances of the protocol where A votes two different values.
The purpose of Q is to disclose the two values v0 and v1.

Q
def=! in(c0, start).out(c0, v0) | ! in(c1, start).out(c1, v1)

However, our protocol is insecure. As seen in Example 3, an attacker may learn kAB ,
and therefore distinguish between the two processes described above. Formally, we have
that P (v0) | Q 6≈ P (v1) | Q. This is reflected by the trace tr′ described below:

tr′
def= tr.in(c0, start).out(c0,w4).in(c1, start).out(c1,w5).in(c′A, start).out(c′A,w6).

We have that (tr′, σ′0) ∈ trace(K0) with K0 = (P (v0) | Q; ∅) and σ′0 as defined
in Example 4. Because of the existence of only one branch using each channel, there
is only one possible execution of P (v1) | Q (up to a bijective renaming of the private
names of sort rand) matching the labels in tr′, and the corresponding execution will
allow us to reach the frame σ′1 as described in Example 4. We have already seen that
static equivalence does not hold, i.e. σ′0 6∼ σ′1.
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3 Ping-pong protocols

We aim at providing a decidability result for the problem of trace equivalence between
protocols in presence of replication. However, it is well-known that replication leads to
undecidability even for the simple case of reachability properties. Thus, we consider a
class of protocols, called Cpp, for which (in a slightly different setting), reachability has
already been proved decidable [9].

3.1 Class Cpp

We basically consider ping-pong protocols (an output is computed using only the mes-
sage previously received in input), and we assume a kind of determinism. Moreover,
we restrict the terms that are manipulated throughout the protocols: only one unknown
message (modelled by the use of a variable of sort msg) can be received at each step.

We fix a variable x ∈ X of sort msg. An input term u (resp. output term v) is a term
defined by the grammars given below:

u := x | s | f(u, k, z) v := x | s | f(v, k, r)
where s, k ∈ Σ0 ∪ {start}, z ∈ X , f ∈ {senc, aenc, sign} and r ∈ N . Moreover, we
assume that each variable (resp. name) occurs at most once in u (resp. v).

Definition 3. Cpp is the class of protocol of the form:

P =
n

|
i=1

pi

|
j=1

!in(ci, u
i
j).new r1. . . . .new rki

j
. out(ci, v

i
j) such that:

1. for all i ∈ {1, . . . , n}, and j ∈ {1, . . . , pi}, ki
j ∈ N, ui

j is an input term, and vi
j is

an output term where names occurring in vi
j are included in {r1, . . . , rki

j
};

2. for all i ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . , pi}, if j1 6= j2 then for any renaming
of variables, ui

j1
and ui

j2
are not unifiable3.

Note that the purpose of item 2 is to restrict the class of protocols to those that have
a deterministic behavior (a particular input action can only be accepted by one branch
of the protocol). This is a natural restriction since most of the protocols are indeed
deterministic: an agent should usually know exactly what to do once he has received a
message. Actually, the main limitations of the class Cpp are stated in item 1: we consider
a restricted signature (e.g. no pair, no hash function), and names can only be used to
produce randomized ciphertexts/signatures.

Example 6. The protocols described in Example 5 are in Cpp. For instance, we can
check that senc(x, kAS , z) is an input term whereas senc(x, kBS , rS) is an output term.
Moreover, the determinism condition (item 2) is clearly satisfied: each branch of the
protocol P (v0) | Q (resp. P (v0) | Q) uses a different channel.

Our main contribution is a decision procedure for trace equivalence of processes
in Cpp. Details of the procedure are provided in Section 4.

Theorem 1. Let P and Q be two protocols in Cpp. The problem whether P and Q are
trace equivalent, i.e. P ≈ Q, is decidable.

3 i.e. there does not exist θ such that ui
j1θ = ui

j2θ.

7



3.2 Undecidability results

The class Cpp is somewhat limited but surprisingly, extending Cpp to non deterministic
processes immediately yields undecidability of trace equivalence. More precisely, trace
inclusion of processes in Cpp is already undecidable.

Theorem 2. Let P and Q be two protocols in Cpp. The problem whether P is trace
included in Q, i.e. P v Q, is undecidable.

This result is shown by encoding the Post Correspondence Problem (PCP). Alterna-
tively, it results from the reduction result established in Section 5 and the undecidability
result established in [12]. Undecidability of trace inclusion actually implies undecid-
ability of trace equivalence as soon as processes are non deterministic. Indeed consider
the choice operator + whose (standard) semantics is given by the following rules:

({P + Q} ∪ P;σ) τ−→ (P ∪ P;σ) ({P + Q} ∪ P;σ) τ−→ (Q ∪ P;σ)

Corollary 1. Let P , Q1, and Q2 be three protocols in Cpp. The problem whether P is
equivalent to Q1 + Q2, i.e. P ≈ Q1 + Q2, is undecidable.

Indeed, consider P and Q1, for which trace inclusion encodes PCP, and let Q2 = P .
Trivially, P v Q1 + Q2. Thus P ≈ Q1 + Q2 if, and only if, Q1 + Q2 v P , i.e. if, and
only if, Q1 v P , hence the undecidability result.

4 From trace equivalence to language equivalence

This section is devoted to a sketch of proof of Theorem 1. Deciding trace equivalence
is done in two main steps. First, we show how to reduce the trace equivalence problem
between protocols in Cpp, to the problem of deciding trace equivalence (still between
protocols in Cpp) when the attacker acts as a forwarder.

Then, we encode the problem of deciding trace equivalence for forwarding attackers
into the problem of language equivalence for real-time generalized pushdown determin-
istic automata (GPDA).

4.1 Generalized pushdown automata

GPDA differ from deterministic pushdown automata (DPA) as they can unstack several
symbols at a time. We consider real-time GPDA with final-state acceptance.

Definition 4. A real-time GPDA is a 7-tuple A = (Q,Π, Γ, q0, ω,Qf , δ) where Q is
the finite set of states, q0 ∈ Q is the initial state, Qf ⊆ Q is the set of accepting
states, Π is the finite input-alphabet, Γ is the finite stack-alphabet, ω is the initial stack
symbol, and δ : (Q×Π × Γ0) → Q× Γ0 is the partial transition function such that:

– Γ0 is a finite subset of Γ ∗; and
– for any (q, a, x) ∈ dom(δ) and y suffix strict of x, we have that (q, a, y) 6∈ dom(δ).
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Let q, q′ ∈ Q, w,w′, γ ∈ Γ ∗, m ∈ Π∗, a ∈ Π; we note (qwγ, am)  A (q′ww′,m)
if (q′, w′) = δ(q, a, γ). The relation ∗

A is the reflexive and transitive closure of A.
For every qw, q′w′ in QΓ ∗ and m ∈ Π∗, we note qw

m−→A q′w′ if, and only if,
(qw, m) ∗

A (q′w′, ε). For sake of clarity, a transition from q to q′ reading a, popping γ

from the stack and pushing w′ will be denoted by q
a;γ/w′

−−−−→ q′.
Let A be a GPDA. The language recognized by A is defined by:

L(A) = {m ∈ Π∗ | q0ω
m−→A qfw for some qf ∈ Qf and w ∈ Γ ∗}.

A real-time GPDA can easily be converted into a DPA by adding new states and
ε-transitions. Thus, the problem of language equivalence for two real-time GPDA A1

and A2, i.e. deciding whether L(A1) = L(A2) is decidable [15].

4.2 Getting rid of the attacker

We define the actions of a forwarder by modifying our semantics. We restrict the recipes
R,R1, and R2 that are used in the IN rule and in static equivalence (Definition 1) to be
either the public constant start or a variable in W . This leads us to consider a new
relation =⇒fwd between configurations, and a new notion of static equivalence ∼fwd. We
denote by ≈fwd the trace equivalence relation induced by this new semantics.

Example 7. The trace exhibited in Example 3 is still a valid one according to the for-
warder semantics, and the frames σ′0 and σ′1 described in Example 4 are in equivalence
according to ∼fwd. Actually, we have that P (v0) | Q ≈fwd P (v1) | Q. Indeed, the fact
that a forwarder simply acts as a relay prevents him to mount the aforementioned attack.

As shown above, the forwarder semantics is very restrictive: a forwarder can not
rely on his deduction capabilities to mount an attack. To counterbalance the effects of
this semantics, the key idea consists in modifying the protocols under study by adding
new rules that encrypt/sign and decrypt/check messages on demand for the forwarder.

Formally, we define a transformation Tfwd that associates to a pair of protocols in Cpp

a finite set of pairs of protocols (still in Cpp), and we show the following result:

Proposition 1. Let P and Q be two protocols in Cpp. We have that:

P ≈ Q if, and only if, P ′ ≈fwd Q′ for some (P ′, Q′) ∈ Tfwd(P,Q).

Roughly the transformation Tfwd consists in first guessing among the keys of the
protocols P and the keys of the protocols Q those that are deducible by the attacker,
as well as a bijection α between these two sets. We can show that such a bijection
necessarily exists when P ≈ Q. Then, to compensate the fact that the attacker is a
simple forwarder, we give him access to oracles for any deducible key k, adding the
corresponding branches in the processes, i.e. in case k is of sort SimKey, we add

! in(csenc
k , x).new r.out(csenc

k , senc(x, k, r)) | ! in(csdec
k , senc(x, k, z)).out(csdec

k , x)
To maintain the equivalence, we do a similar transformation in both P and Q relying
on the bijection α. We ensure that the set of deducible keys has been correctly guessed
by adding of some extra processes. Then the main step of the proof consists in showing
that the forwarder has now the same power as a full attacker, although he cannot reuse
the same randomness in two distinct encryptions/signatures, as a real attacker could.
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4.3 Encoding a protocol into a real-time GPDA

For any process P ∈ Cpp, we can show that it is possible to define a polynomial-sized
real-time GPDA AP such that trace equivalence against forwarder of two processes
coincides with language equivalence of the two corresponding automata.

Theorem 3. Let P and Q in Cpp, we have that: P ≈fwd Q ⇐⇒ L(AP ) = L(AQ).

The idea is that the automaton AP associated to a protocol P recognizes the words
(a sequence of channels) that correspond to a possible execution in P . The stack of AP

is used to store a (partial) representation of the last outputted term. This requires to
convert a term into a word, and we use the following representation:

s = s for any constant s ∈ Σ0 ∪ {start}; and f(v, k, r) = v̄.k otherwise.
Note that, even if our signature is infinite, we show that only a finite number of con-

stants of sort msg and a finite number of constants of sort channel need to be considered
(namely those that occur in the protocols under study). Thus, the stack-alphabet and the
input-alphabet of the automaton are both finite.

To construct the automaton associated to a process P ∈ Cpp, we need to construct
an automaton that recognizes any execution of P and the corresponding valid tests. For
the sake of illustration, we present only the automaton (depicted below) that recognizes
tests of the form w = w′ such that the corresponding term is actually a constant.

Intuitively, the basic building blocks (e.g. q0 with the transitions from q0 to itself)
mimic an execution of P where each input is fed with the last outputted term. Then, to
recognize the tests of the form w = w′ that are true in such an execution, it is sufficient
to memorize the constant si that is associated to w (adding a new state qi), and to see
whether it is possible to reach a state where the stack contains si again.

Capturing tests that lead to non-constant symbols (i.e. terms of the form senc(u, k, r))
is more tricky for several reasons. First, it is not possible anymore to memorize the re-
sulting term in a state of the automaton. Second, names of sort rand play a role in such
a test, while they are forgotten in our encoding. We therefore have to, first, characterize
more precisely trace equivalence and secondly, construct more complex automata that
use some special track symbols to encode when randomized ciphertexts may be reused.

q0

q1

q`

qf

...

...

qk

ci;ui
j/vi

j

ci;ui
j/vi

j

ci;ui
j/vi

j

ci;ui
j/vi

j

con
st;ω

s1/
ω

const;ωsk/ω

const;ωs̀ /ω

const;ωs1/ω

const;ωsk/ω

con
st;ω

s`/ω
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5 From language equivalence to trace equivalence

We have just seen how to encode equivalence of processes in Cpp into real-time GPDA.
The equivalence of processes in Cpp is actually equivalent to language equivalence of
real-time GPDA. Indeed, we can conversely encode any real-time GPDA into a process
in Cpp, preserving equivalence. The transformation works as follows.

Given a word u = α1. . . . .αp, for sake of concision, the expression x.u will denote
either the term senc(. . . senc(x, α1, z1), . . .), αp, zp) when it occurs as an input term;
or senc(. . . senc(x, α1, r1), . . .), αp, rp) when it occurs as an output term. Then given
an automaton A = (Q,Π, Γ, q0, ω,Qf , δ), the corresponding process PA is defined as
follows:

PA
def= ! in(c0, start).new r.out(c0, senc(ω, q0, r))
| ! in(ca, senc(x.u, q, z)).new r̃.out(ca, senc(x.v, q′, r))
| ! in(cf , senc(x, qf , z)).out(cf , start)
| P ′

A

where a quantifies over Π , q over Q, u over words in Γ ∗ such that (q, a, u) ∈ dom(δ),
qf over Qf , and (q′, v) = δ(q, a, u).

Intuitively, the stack of the automata A is encoded as a pile of encryptions (where
each key encodes a tile of the stack). Then, upon receiving a stack s encrypted by q
on channel ca, the process PA mimics the transition of A at state q and stack s, upon
reading a. The resulting stack is sent encrypted by the resulting state. This polynomial
encoding (with some additional technical details hidden in P ′

A) preserves equivalence.

Proposition 2. Let A and B be two real-time GPDA: L(A) ⊆ L(B) ⇐⇒ PA v PB.

Therefore, checking for equivalence of protocols is as difficult as checking equiv-
alence of real-time generalized pushdown deterministic automata. It follows that the
exact complexity of checking equivalence of protocols is unknown. The only upper
bound is that equivalence is at most primitive recursive. This bound comes from the
algorithm proposed by C. Stirling for equivalence of DPA [16] (Icalp 2002). Whether
equivalence of DPA (or even real-time GPDA) is e.g. at least NP-hard is unknown.

6 Conclusion

We have shown a first decidability result for equivalence of security protocols for an un-
bounded number of sessions by reducing it to the equality of languages of deterministic
pushdown automata. We further show that deciding equivalence of security protocols is
actually at least as hard as deciding equality of languages of deterministic, generalized,
real-time pushdown automata.

Our class of security protocols handles only randomized primitives, namely sym-
metric/asymmetric encryptions and signatures. Our decidability result could be ex-
tended to handle deterministic primitives instead of the randomized one (the reverse
encoding - from real-time GPDAs to processes with deterministic encryption - may not
hold anymore). Due to the use of pushdown automata, extending our decidability result
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to protocols with pair is not straightforward. A direction is to use pushdown automata
for which stacks are terms.

G. Sénizergues is currently implementing his procedure for pushdown automata [14].
As soon as the tool will be available, we plan to implement our translation, yielding a
tool for automatically checking equivalence of security protocols, for an unbounded
number of sessions.
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