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Abstract. Among the approximation methods for the verification of
counter systems, one of them consists in model-checking their flat unfold-
ings. Unfortunately, the complexity characterization of model-checking
problems for such operational models is not always well studied except
for reachability queries or for Past LTL. In this paper, we characterize
the complexity of model-checking problems on flat counter systems for
the specification languages including first-order logic, linear mu-calculus,
infinite automata, and related formalisms. Our results span different
complexity classes (mainly from PTime to PSpace) and they apply to
languages in which arithmetical constraints on counter values are sys-
tematically allowed. As far as the proof techniques are concerned, we
provide a uniform approach that focuses on the main issues.

1 Introduction

Flat counter systems. Counter systems, finite-state automata equipped with pro-
gram variables (counters) interpreted over non-negative integers, are known to
be ubiquitous in formal verification. Since counter systems can actually simulate
Turing machines [19], it is undecidable to check the existence of a run satis-
fying a given (reachability, temporal, etc.) property. However it is possible to
approximate the behavior of counter systems by looking at a subclass of witness
runs for which an analysis is feasible. A standard method consists in consider-
ing a finite union of path schemas for abstracting the whole bunch of runs, as
done in [15]. More precisely, given a finite set of transitions ∆, a path schema
is an ω-regular expression over ∆ of the form L = p1(l1)

∗ · · · pk−1(lk−1)∗pk(lk)ω

where both pi’s and li’s are paths in the control graph and moreover, the li’s
are loops. A path schema defines a set of infinite runs that respect a sequence of
transitions that belongs to L. We write Runs(c0,L) to denote such a set of runs
starting at the initial configuration c0 whereas Reach(c0,L) denotes the set of
configurations occurring in the runs of Runs(c0,L). A counter system is flattable
whenever the set of configurations reachable from c0 is equal to Reach(c0,L) for
some finite union of path schemas L. Similarly, a flat counter system, a system
in which each control state belongs to at most one simple loop, verifies that the
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set of runs from c0 is equal to Runs(c0,L) for some finite union of path schemas
L. Obviously, flat counter systems are flattable. Moreover, reachability sets of
flattable counter systems are known to be Presburger-definable, see e.g. [2,4,8].
That is why, verification of flat counter systems belongs to the core of methods
for model-checking arbitrary counter systems and it is desirable to character-
ize the computational complexity of model checking problems on this kind of
systems (see e.g. results about loops in [3]). Decidability results for verifying
safety and reachability properties on flat counter systems have been obtained
in [4,8,3]. For the verification of temporal properties, it is much more difficult to
get sharp complexity characterization. For instance, it is known that verifying
flat counter systems with CTL⋆ enriched with arithmetical constraints is decid-
able [6] whereas it is only NP-complete with Past LTL [5] (NP-completeness
already holds with flat Kripke structures [11]).

Our motivations. Our objectives are to provide a thorough classification of
model-checking problems on flat counter systems when linear-time properties
are considered. So far complexity is known with Past LTL [5] but even the de-
cidability status with linear µ-calculus is unknown. Herein, we wish to consider
several formalisms specifying linear-time properties (FO, linear µ-calculus, in-
finite automata) and to determine the complexity of model-checking problems
on flat counter systems. Note that FO is as expressive as Past LTL but much
more concise whereas linear µ-calculus is strictly more expressive than Past LTL,
which motivates the choice for these formalisms dealing with linear properties.

Our contributions. We characterize the computational complexity of model-
checking problems on flat counter systems for several prominent linear-time
specification languages whose alphabets are related to atomic propositions but
also to linear constraints on counter values. We obtain the following results:

– The problem of model-checking first-order formulae on flat counter
systems is PSpace-complete (Theorem 9). Note that model-checking
classical first-order formulae over arbitrary Kripke structures is already known
to be non-elementary. However the flatness assumption allows to drop the
complexity to PSpace even though linear constraints on counter values are
used in the specification language.

– Model-checking linear µ-calculus formulae on flat counter systems
is PSpace-complete (Theorem 14). Not only linear µ-calculus is known
to be more expressive than first-order logic (or than Past LTL) but also the
decidability status of the problem on flat counter systems was open [6]. So,
we establish decidability and we provide a complexity characterization.

– Model-checking Büchi automata over flat counter systems is NP-
complete (Theorem 12).

– Global model-checking is possible for all the above mentioned for-
malisms (Corollary 16).

The omitted proofs can be found in the Appendix.
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2 Preliminaries

2.1 Counter Systems

Counter constraints are defined below as a subclass of Presburger formulae whose
free variables are understood as counters. Such constraints are used to define
guards in counter systems but also to define arithmetical constraints in temporal
formulae. Let C = {x1, x2, . . .} be a countably infinite set of counters (variables
interpreted over non-negative integers) and AT = {p1, p2, . . .} be a countable
infinite set of propositional variables (abstract properties about program points).
We write Cn to denote the restriction of C to {x1, x2, . . . , xn}. The set of guards
g using the counters from Cn, written G(Cn), is made of Boolean combinations
of atomic guards of the form

∑n
i=0 ai · xi ∼ b where the ai’s are in Z, b ∈ N

and ∼∈ {=,≤,≥, <,>}. For g ∈ G(Cn) and a vector v ∈ N
n, we say that v

satisfies g, written v |= g, if the formula obtained by replacing each xi by v[i]
holds. For n ≥ 1, a counter system of dimension n (shortly a counter system)
S is a tuple 〈Q, Cn, ∆, l〉 where: Q is a finite set of control states, l : Q → 2AT

is a labeling function, ∆ ⊆ Q × G(Cn) × Z
n × Q is a finite set of transitions

labeled by guards and updates. As usual, to a counter system S = 〈Q, Cn, ∆, l〉,
we associate a labeled transition system TS(S) = 〈C,→〉 where C = Q × N

n is
the set of configurations and →⊆ C ×∆ × C is the transition relation defined

by: 〈〈q,v〉, δ, 〈q′,v′〉〉 ∈→ (also written 〈q,v〉
δ
−→ 〈q′,v′〉) iff δ = 〈q, g,u, q′〉 ∈ ∆,

v |= g and v′ = v+u. Note that in such a transition system, the counter values
are non-negative since C = Q× N

n.
Given an initial configuration c0 ∈ Q × N

n, a run ρ starting from c0 in
S is an infinite path in the associated transition system TS(S) denoted as:

ρ := c0
δ0−→ · · ·

δm−1
−−−→ cm

δm−−→ · · · where ci ∈ Q×N
n and δi ∈ ∆ for all i ∈ N. We

say that a counter system is flat if every node in the underlying graph belongs
to at most one simple cycle (a cycle being simple if no edge is repeated twice
in it) [4,15,5]. We denote by CFS the class of flat counter systems. A Kripke
structure S can be seen as a counter system without counter and is denoted
by 〈Q,∆, l〉 where ∆ ⊆ Q × Q and l : Q → 2AT. Standard notions on counter
systems, as configuration, run or flatness, naturally apply to Kripke structures.

2.2 Model-Checking Problem

We define now our main model-checking problem on flat counter systems param-
eterized by a specification language L. First, we need to introduce the notion
of constrained alphabet whose letters should be understood as Boolean combi-
nations of atomic formulae (details follow). A constrained alphabet is a triple of
the form 〈at, agn, Σ〉 where at is a finite subset of AT, agn is a finite subset of
atomic guards from G(Cn) and Σ is a subset of 2at∪agn . The size of a constrained
alphabet is given by size(〈at, agn, Σ〉) = card(at) + card(agn) + card(Σ) where
card(X) denotes the cardinality of the set X . Of course, any standard alphabet
(finite set of letters) can be easily viewed as a constrained alphabet (by ignoring
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the structure of letters). Given an infinite run ρ := 〈q0,v0〉 → 〈q1,v1〉 · · · from
a counter system with n counters and an ω-word over a constrained alphabet
w = a0, a1, . . . ∈ Σω, we say that ρ satisfies w, written ρ |= w, whenever for
i ≥ 0, we have p ∈ l(qi) [resp. p 6∈ l(qi)] for every p ∈ (ai∩at) [resp. p ∈ (at\ai)]
and vi |= g [resp. vi 6|= g] for every g ∈ (ai ∩ agn) [resp. g ∈ (agn \ ai)].

A specification language L over a constrained alphabet 〈at, agn, Σ〉 is a set
of specifications A, each of it defining a set L(A) of ω-words over Σ. We will
also sometimes consider specification languages over (unconstrained) standard
finite alphabets (as usually defined). We now define the model-checking problem
over flat counter systems with specification language L (written MC(L, CFS)):
it takes as input a flat counter system S, a configuration c and a specification A
from L and asks whether there is a run ρ starting at c and w ∈ Σω in L(A) such
that ρ |= w. We write ρ |= A whenever there is w ∈ L(A) such that ρ |= w.

2.3 A Bunch of Specification Languages

Infinite Automata. Now let us define the specification languages BA and ABA,
respectively with nondeterministic Büchi automata and with alternating Büchi
automata. We consider here transitions labeled by Boolean combinations of
atoms from at ∪ agn. A specification A in ABA is a structure of the form
〈Q,E, q0, F 〉 where E is a finite subset of Q × B(at ∪ agn)× B

+(Q) and B
+(Q)

denotes the set of positive Boolean combinations built over Q. Specification A is
a concise representation for the alternating Büchi automaton BA = 〈Q, δ, q0, F 〉

where δ : Q × 2at∪agn → B
+(Q) and δ(q, a)

def

=
∨
〈q,ψ,ψ′〉∈E, a|=ψ ψ′. We say

that A is over the constrained alphabet 〈at, agn, Σ〉, whenever, for all edges
〈q, ψ, ψ′〉 ∈ E, ψ holds at most for letters from Σ (i.e. the transition relation
of BA belongs to Q× Σ→ B

+(Q) ). We have then L(A) = L(BA) with the usual
acceptance criterion for alternating Büchi automata. The specification language
BA is defined in a similar way using Büchi automata. Hence the transition re-
lation E of A = 〈Q,E, q0, F 〉 in BA is included in Q× B(at ∪ agn)×Q and the
transition relation of the Büchi automaton BA is then included in Q×2at∪agn×Q.

Linear-time Temporal Logics. Below, we present briefly three logical languages
that are tailored to specify runs of counter systems, namely ETL (see e.g.[28,21]),
Past LTL (see e.g. [23]) and linear µ-calculus (or µTL), see e.g. [25]. A specifi-
cation in one of these logical specification languages is just a formula. The dif-
ferences with their standard versions in which models are ω-sequences of propo-
sitional valuations are listed below: models are infinite runs of counters systems;
atomic formulae are either propositional variables in AT or atomic guards; given

an infinite run ρ := 〈q0,v0〉 → 〈q1,v1〉 · · · , we will have ρ, i |= p
def

⇔ p ∈ l(qi)

and ρ, i |= g
def

⇔ vi |= g. The temporal operators, fixed point operators and
automata-based operators are interpreted then as usual. A formula φ built over
the propositional variables in at and the atomic guards in agn defines a language
L(φ) over 〈at, agn, Σ〉 with Σ = 2at∪agn . There is no need to recall here the syntax
and semantics of ETL, Past LTL and linear µ-calculus since with their standard
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definitions and with the above-mentioned differences, their variants for counter
systems are defined unambiguously (see a lengthy presentation of Past LTL for
counter systems in [5]). However, we may recall a few definitions on-the-fly if
needed. Herein the size of formulae is understood as the number of subformulae.

Example. In adjoining figure, we present a flat counter system with two counters
and with labeling function l such that l(q3) = {p, q} and l(q5) = {p}. We would
like to characterize the set of configurations c with control state q1 such that
there is some infinite run from c for which after some position i, all future even
positions j (i.e. i ≡2 j) satisfy that p holds and the first counter is equal to the
second counter.

q1start

q2

q3

q4

q5

⊤, (0, 0)
⊤, (0, 0)

⊤, (0, 0)

⊤, (−3, 0)

g′(x1, x2), (1, 0) g(x1, x2), (0, 1)

⊤, (0, 0)

⊤, (0,−2) This can be specified in linear µ-calculus using as
atomic formulae either propositional variables or
atomic guards. The corresponding formula in linear
µ-calculus is: µz1.(X(νz2.(p∧ (x1− x2 = 0)∧XXz2)∨
Xz1). Clearly, such a position i occurs in any run
after reaching the control state q3 with the same
value for both counters. Hence, the configurations
〈q1,v〉 satisfying these properties have counter val-
ues v ∈ N

2 verifying the Presburger formula below:

∃ y (((x1 = 3y+ x2) ∧ (∀ y
′ g(x2 + y

′, x2 + y
′) ∧ g′(x2 + y

′, x2 + y
′ + 1)))∨

((x2 = 2y+ x1) ∧ (∀ y
′ g(x1 + y

′, x1 + y
′) ∧ g′(x1 + y

′, x1 + y
′ + 1))))

In the paper, we shall establish how to compute systematically such formulae
(even without universal quantifications) for different specification languages.

3 Constrained Path Schemas

In [5] we introduced minimal path schemas for flat counter systems. Now, we
introduce constrained path schemas that are more abstract than path schemas.
A constrained path schema cps is a pair 〈p1(l1)∗ · · · pk−1(lk−1)∗pk(lk)ω , φ(x1,
. . . , xk−1)〉 where the first component is an ω-regular expression over a con-
strained alphabet 〈at, agn, Σ〉 with pi, li’s in Σ∗, and φ(x1, . . . , xk−1) ∈ G(Ck−1).

Each constrained path schema defines a language L(cps) ⊆ Σω given by L(cps)
def

=
{p1(l1)n1 · · · pk−1(lk−1)nk−1pk(lk)

ω : φ(n1, . . . , nk−1) holds true}. The size of
cps, written size(cps), is equal to 2k+len(p1l1 · · · pk−1lk−1pklk)+size(φ(x1, . . . ,
xk−1)). Observe that in general constrained path schemas are defined under
constrained alphabet and so will the associated specifications unless stated oth-
erwise.

Let us consider below the three decision problems on constrained path schemas
that are useful in the rest of the paper. Consistency problem checks whether
L(cps) is non-empty. It amounts to verify the satisfiability status of the second
component. Let us recall the result below.
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Theorem 1. [22] There are polynomials pol1(·), pol2(·) and pol3(·) such
that for every guard g, say in G(Cn), of size N , we have (I) there exist B ⊆
[0, 2pol1(N)]n and P1, . . . ,Pα ∈ [0, 2pol1(N)]n with α ≤ 2pol2(N) such that for ev-
ery y ∈ N

n, y |= g iff there are b ∈ B and a ∈ N
α such that y = b + a[1]P1 +

· · ·+ a[α]Pα; (II) if g is satisfiable, then there is y ∈ [0, 2pol3(N)]n s.t. y |= g.

Consequently, the consistency problem is NP-complete (the hardness being ob-
tained by reducing SAT). The intersection non-emptiness problem, clearly re-
lated to model-checking problem, takes as input a constrained path schema
cps and a specification A ∈ L and asks whether L(cps) ∩ L(A) 6= ∅. Typi-
cally, for several specification languages L, we establish the existence of a com-
putable map fL (at most exponential) such that whenever L(cps) ∩ L(A) 6= ∅
there is p1(l1)

n1 · · · pk−1(lk−1)nk−1pk(lk)
ω belonging to the intersection and for

which each ni is bounded by fL(A, cps). This motivates the introduction of the
membership problem for L that takes as input a constrained path schema cps,
a specification A ∈ L and n1, . . . , nk−1 ∈ N and checks whether p1(l1)

n1 · · ·
pk−1(lk−1)

nk−1pk(lk)
ω ∈ L(A). Here the ni’s are understood to be encoded in

binary and we do not require them to satisfy the constraint of the path schema.
Since constrained path schemas are abstractions of path schemas used in [5],

from this work we can show that runs from flat counter systems can be repre-
sented by a finite set of constrained path schemas as stated below.

Theorem 2. Let at be a finite set of atomic propositions, agn be a finite set of
atomic guards from G(Cn), S be a flat counter system whose atomic propositions
and atomic guards are from at∪agn and c0 = 〈q0, v0〉 be an initial configuration.
One can construct in exponential time a set X of constrained path schemas
s.t.: (I) Each constrained path schema cps in X has an alphabet of the form
〈at, agn, Σ〉 (Σ may vary) and cps is of polynomial size. (II) Checking whether a
constrained path schema belongs to X can be done in polynomial time. (III) For
every run ρ from c0, there is a constrained path schema cps in X and w ∈ L(cps)
such that ρ |= w. (IV) For every constrained path schema cps in X and for every
w ∈ L(cps), there is a run ρ from c0 such that ρ |= w.

In order to take advantage of Theorem 2 for the verification of flat counter sys-
tems, we need to introduce an additional property: L has the nice subalphabet
property iff for all specifications A ∈ L over 〈at, agn, Σ〉 and for all constrained
alphabets 〈at, agn, Σ′〉, one can build a specification A′ over 〈at, agn, Σ′〉 in poly-
nomial time in the sizes of A and 〈at, agn, Σ′〉 such that L(A) ∩ (Σ′)ω = L(A′).
We need this property to build from A and a constraint path schema over
〈at, agn, Σ′〉, the specification A′. This property will also be used to transform a
specification over 〈at, agn, Σ〉 into a specification over the finite alphabet Σ′.

Lemma 3. BA, ABA, µTL, ETL, Past LTL have the nice subalphabet property.

The abstract Algorithm 1 which performs the following steps (1) to (3) takes as
input S, a configuration c0 and A ∈ L and solves MC(L, CFS): (1) Guess cps

over 〈at, agn, Σ′〉 in X ; (2) Build A′ such that L(A) ∩ (Σ′)ω = L(A′); (3) Return
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L(cps) ∩ L(A′) 6= ∅. Thanks to Theorem 2, the first guess can be performed
in polynomial time and with the nice subalphabet property, we can build A′ in
polynomial time too. This allows us to conclude the following lemma which is a
consequence of the correctness of the above algorithm (Appendix C).

Lemma 4. If L has the nice subalphabet property and its intersection non-
emptiness problem is in NP[resp. PSpace], then MC(L, CFS) is in NP[resp.
PSpace]

We know that the membership problem for Past LTL is in PTime and the inter-
section non-emptiness problem is in NP (as a consequence of [5, Theorem 3]). By
Lemma 4, we are able to conclude the main result from [5]: MC(PastLTL, CFS)
is in NP. This is not surprising at all since in this paper we present a general
method for different specification languages that rests on Theorem 2 (a conse-
quence of technical developments from [5]).

4 Taming First-Order Logic and Flat Counter Systems

In this section, we consider first-order logic as a specification language. By
Kamp’s Theorem, first-order logic has the same expressive power as Past LTL
and hence model-checking first-order logic over flat counter systems is decid-
able too [5]. However this does not provide us an optimal upper bound for the
model-checking problem. In fact, it is known that the satisfiability problem for
first-order logic formulae is non-elementary and consequently the translation into
Past LTL leads to a significant blow-up in the size of the formula.

4.1 First-Order Logic in a Nutshell

For defining first-order logic formulae, we consider a countably infinite set of
variables Z and a finite (unconstrained) alphabet Σ. The syntax of first-order
logic over atomic propositions FOΣ is then given by the following grammar:
φ ::= a(z) | S(z, z′) | z < z

′ | z = z
′ | ¬φ | φ ∧ φ′ | ∃z φ(z) where a ∈ Σ and

z, z′ ∈ Z. For a formula φ, we will denote by free(φ) its set of free variables de-
fined as usual. A formula with no free variable is called a sentence. As usual,
we define the quantifier height qh(φ) of a formula φ as the maximum nesting
depth of the operators ∃ in φ. Models for FOΣ are ω-words over the alphabet
Σ and variables are interpreted by positions in the word. A position assignment
is a partial function f : Z → N. Given a model w ∈ Σω, a FOΣ formula φ and
a position assignment f such that f(z) ∈ N for every variable z ∈ free(φ), the
satisfaction relation |=f is defined as usual. Given a FOΣ sentence φ, we write
w |= φ when w |=f φ for an arbitrary position assignment f . The language of
ω-words w over Σ associated to a sentence φ is then L(φ) = {w ∈ Σω | w |= φ}.
For n ∈ N, we define the equivalence relation ≈n between ω-words over Σ as:
w ≈n w

′ when for every sentence φ with qh(φ) ≤ n, w |= φ iff w′ |= φ.
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FO on CS. FO formulae interpreted over infinite runs of counter systems are
defined as FO formulae over a finite alphabet except that atomic formulae of the
form a(z) are replaced by atomic formulae of the form p(z) or g(z) where p is
an atomic formula or g is an atomic guard from G(Cn). Hence, a formula φ built
over atomic formulae from a finite set at of atomic propositions and from a finite
set agn of atomic guards from G(Cn) defines a specification for the constrained
alphabet 〈at, atn, 2at∪agn〉. Note that the alphabet can be of exponential size in
the size of φ and p(z) actually corresponds to a disjunction

∨
p∈a a(z).

Lemma 5. FO has the nice subalphabet property.

We have taken time to properly define first-order logic for counter systems
(whose models are runs of counter systems, see also Section 2.2) but below, we
will mainly operate with FOΣ over a standard (unconstrained) alphabet. Let us
state our first result about FOΣ which allows us to bound the number of times
each loop is taken in a constrained path schema in order to satisfy a formula.
We provide a stuttering theorem equivalent for FOΣ formulas as is done in [5]
for PLTL and in [13] for LTL. The lengthy proof of Theorem 6 uses Ehrenfeuch-
Fraïssé game (Appendix E).

Theorem 6 (Stuttering Theorem). Let w = w1s
Mw2, w

′ = w1s
M+1w2 ∈ Σω

such that N ≥ 1, M > 2N+1 and s ∈ Σ+. Then w ≈N w′.

4.2 Model-Checking Flat Counter Systems with FO

Let us characterize the complexity of MC(FO, CFS). First, we will state the
complexity of the intersection non-emptiness problem. Given a constrained path
schema cps and a FO sentence ψ, Theorem 1 provides two polynomials pol1 and
pol2 to represent succinctly the solutions of the guard in cps. Theorem 6 allows
us to bound the number of times loops are visited. Consequently, we can compute
a value fFO(ψ, cps) exponential in the size of ψ and cps, as explained earlier,
which allows us to find a witness for the intersection non-emptiness problem
where each loop is taken a number of times smaller than fFO(ψ, cps).

Lemma 7. Let cps be a constrained path schema and ψ be a FOΣ sentence.
Then L(cps) ∩ L(ψ) is non-empty iff there is an ω-word in L(cps) ∩ L(ψ) in
which each loop is taken at most 2(qh(ψ)+2)+pol1(size(cps))+pol2(size(cps)) times.

Hence fFO(ψ, cps) has the value 2(qh(ψ)+2)+(pol1+pol2)(size(cps)). Furthermore
checking whether L(cps) ∩ L(ψ) is non-empty amounts to guess some n ∈
[0, 2(qh(ψ)+2)+pol1(size(cps))+pol2(size(cps))]k−1 and verify whether w = p1(l1)

n[1]

· · · pk−1(lk−1)
n[k−1]pk(lk)

ω ∈ L(cps) ∩ L(ψ). Checking if w ∈ L(cps) can be
done in polynomial time in (qh(ψ)+2)+pol1(size(cps))+pol2(size(cps)) (and
therefore in polynomial time in size(ψ) + size(cps)) since this amounts to ver-
ify whether n |= φ. Checking whether w ∈ L(ψ) can be done in exponential
space in size(ψ)+ size(cps) by using [17, Proposition 4.2]. Hence, this leads to a
nondeterministic exponential space decision procedure for the intersection non-
emptiness problem but it is possible to get down to nondeterministic polynomial
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space using the succinct representation of constrained path schema as stated by
Lemma 8 below for which the lower bound is deduced by the fact that model-
checking ultimately periodic words with first-order logic is PSpace-hard [17].

Lemma 8. Membership problem with FOΣ is PSpace-complete.

Note that the membership problem for FO is for unconstrained alphabet, but due
to the nice subalphabet property of FO, the same holds for constrained alphabet
since given a FO formula over 〈at, agn, Σ〉, we can build in polynomial time a
FO formula over 〈at, agn, Σ′〉 from which we can build also in polynomial time
a formula of FOΣ′ (where Σ′ is for instance the alphabet labeling a constrained
path schema). We can now state the main results concerning FO.

Theorem 9. (I) The intersection non-emptiness problem with FO is PSpace-
complete. (II) MC(FO, CFS) is PSpace-complete. (III) Model-checking flat Krip-
ke structures with FO is PSpace-complete.

Proof. (I) is a consequence of Lemma 7 and Lemma 8. We obtain (II) from (I)
by applying Lemma 4 and Lemma 5. (III) is obtained by observing that flat
Kripke structures form a subclass of flat counter systems. To obtain the lower
bound, we use that model-checking ultimately periodic words with first-order
logic is PSpace-hard [17]. ⊓⊔

5 Taming Linear µ-calculus and Other Languages

We now consider several specification languages defining ω-regular properties
on atomic propositions and arithmetical constraints. First, we deal with BA by
establishing Theorem 10 and then deduce results for ABA, ETL and µTL.

Theorem 10. Let B = 〈Q, Σ, q0, ∆, F 〉 be a Büchi automaton (with standard
definition) and cps = 〈p1(l1)∗ · · · pk−1(lk−1)∗pk(lk)ω, φ(x1, . . . , xk−1)〉 be a con-
strained path schema over Σ. We have L(cps) ∩ L(B) 6= ∅ iff there exists y ∈
[0, 2pol1(size(cps))+2.card(Q)k×2pol1(size(cps))+pol2(size(cps))]k−1 such that p1(l1)

y[1]

. . . pk−1(lk−1)
y[k−1]pkl

ω
k ∈ L(B) ∩ L(cps) (pol1 and pol2 are from Theorem 1).

Theorem 10 can be viewed as a pumping lemma involving an automaton and
semilinear sets. Thanks to it we obtain an exponential bound for the map fBA so
that fBA(B, cps) = 2pol1(size(cps))+2.card(Q)size(cps)×2pol1(size(cps))+pol2(size(cps)).
So checking L(cps) ∩ L(B) 6= ∅ amounts to guess some n ∈ [0, 2pol1(size(cps)) +
2.card(Q)size(cps)×2pol1(size(cps))+pol2(size(cps))]k−1 and to verify whether the word
w = p1(l1)

n[1] · · · pk−1(lk−1)n[k−1]pk(lk)ω ∈ L(cps) ∩ L(B). Checking whether
w ∈ L(cps) can be done in polynomial time in size(B) + size(cps) since this
amounts to check n |= φ. Checking whether w ∈ L(B) can be also done in poly-
nomial time by using the results from [17]. Indeed, w can be encoded in polyno-
mial time as a pair of straight-line programs and by [17, Corollary 5.4] this can
be done in polynomial time. So, the membership problem for Büchi automata
is in PTime. By using that BA has the nice subalphabet property and that we
can create a polynomial size Büchi automata from a given BA specification and
cps, we get the following result.
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Lemma 11. The intersection non-emptiness problem with BA is NP-complete.

Now, by Lemma 3, Lemma 4 and Lemma 11, we get the result below for which
the lower bound is obtained from an easy reduction of SAT.

Theorem 12. MC(BA, CFS) is NP-complete.

We are now ready to deal with ABA, ETL and linear µ-calculus. A language
L has the nice BA property iff for every specification A from L, we can build a
Büchi automaton BA such that L(A) = L(BA), each state of BA is of polynomial
size, it can be checked if a state is initial [resp. accepting] in polynomial space
and the transition relation can be decided in polynomial space too. So, given a
language L having the nice BA property, a constrained path schema cps and
a specification in A ∈ L, if L(cps) ∩ L(A) is non-empty, then there is an ω-
word in L(cps) ∩ L(A) such that each loop is taken at most a number of times
bounded by fBA(BA, cps). So fL(A, cps) is obviously bounded by fBA(BA, cps).
Hence, checking whether L(cps)∩L(A) is non-empty amounts to guess some n ∈
[0, fL(A, cps)]

k−1 and check whether w = p1(l1)
n[1] · · · pk−1(lk−1)n[k−1]pk(lk)ω ∈

L(cps) ∩ L(A). Checking whether w ∈ L(cps) can be done in polynomial time
in size(A) + size(cps) since this amounts to check n |= φ. Checking whether
w ∈ L(A) can be done in nondeterministic polynomial space by reading w while
guessing an accepting run for BA. Actually, one guesses a state q from BA and
check whether the prefix p1(l1)

n[1] · · · pk−1(lk−1)n[k−1]pk can reach it and then
nonemptiness between (lk)

ω and the Büchi automaton BqA in which q is an initial
state is checked. Again, this can be done in nondeterministic polynomial space
thanks to the nice BA property. We obtain the lemma below.

Lemma 13. Membership problem and intersection non-emptiness problem for
L having the nice BA property are in PSpace.

Let us recall consequences of results from the literature. ETL has the nice BA
property by [26], linear µ-calculus has the nice BA property by [25] and ABA
has the nice BA property by [20]. Note that the results for ETL and ABA can
be also obtained thanks to translations into linear µ-calculus. By Lemma 13,
Lemma 4 and the above-mentioned results, we obtain the following results.

Theorem 14. MC(ABA, CFS), MC(ETL, CFS) and MC(µTL, CFS) are in
PSpace.

Note that for obtaining the PSpace upper bound, we use the same procedure for
all the logics. Using that the emptiness problem for finite alternating automata
over a single letter alphabet is PSpace-hard [9], we are also able to get lower
bounds.

Theorem 15. (I) The intersection non-emptiness problem for ABA [resp. µTL]
is PSpace-hard. (II) MC(ABA, CFS) and MC(µTL, CFS) are PSpace-hard.

According to the proof of Theorem 15 (Appendix K), PSpace-hardness al-
ready holds for a fixed Kripke structure, that is actually a simple path schema.
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Hence, for linear µ-caluclus, there is a complexity gap between model-checking
unconstrained path schemas with two loops (in UP∩co-UP [10]) and model-
checking unconstrained path schemas (Kripke structures) made of a single loop,
which is in contrast to Past LTL for which model-checking unconstrained path
schemas with a bounded number of loops is in PTime [5, Theorem 9].

As an additional corollary, we can solve the global model-checking prob-
lem with existential Presburger formulae. The global model-checking consists in
characterizing the set of initial configurations from which there exists a run sat-
isfying a given specification. We knew that Presburger formulae exist for global
model-checking [6] for Past LTL (and therefore for FO) but we can conclude that
they are structurally simple and we provide an alternative proof. Moreover, the
question has been open for µTL since the decidability status of MC(µTL, CFS)
has been only resolved in the present work.

Corollary 16. Let L be a specification language among FO, BA, ABA, ETL or
µTL. Given a flat counter system S, a control state q and a specification A in
L, one can effectively build an existential Presburger formula φ(z1, . . . , zn) such
that for all v ∈ N

n. v |= φ iff there is a run ρ starting at 〈q, v〉 verifying ρ |= A.

6 Conclusion

We characterized the complexity of MC(L, CFS) for prominent linear-time spec-
ification languages L whose letters are made of atomic propositions and linear
constraints. We proved the PSpace-completeness of the problem with linear µ-
calculus (decidability was open), for alternating Büchi automata and also for
FO. When specifications are expressed with Büchi automata, the problem is
shown NP-complete. Global model-checking is also possible on flat counter sys-
tems with such specification languages. Even though the core of our work relies
on small solutions of quantifier-free Presburger formulae, stuttering properties,
automata-based approach and on-the-fly algorithms, our approach is designed to
be generic. Not only this witnesses the robustness of our method but our com-
plexity characterization justifies further why verification of flat counter systems
can be at the core of methods for model-checking counter systems. Our main
results are in the table below with useful comparisons (‘Ult. periodic KS’ stands
for ultimately periodic Kripke structures namely a path followed by a loop).

Flat counter systems Kripke struct. Flat Kripke struct. Ult. periodic KS

µTL PSpace-C (Thm. 14) PSpace-C [25] PSpace-C (Thm. 14) in UP∩co-UP [18]
ABA PSpace-C (Thm. 14) PSpace-C PSpace-C (Thm. 14) in PTime (see e.g. [12, p. 3])
ETL in PSpace (Thm. 14) PSpace-C [23] in PSpace [23] in PTime (see e.g. [21,12])
BA NP-C (Thm.12) in PTime in PTime in PTime

FO PSpace-C (Thm. 9) Non-el. [24] PSpace-C (Thm. 9) PSpace-C [17]
Past LTL NP-C [5] PSpace-C [23] NP-C [11,5] PTime [14]
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A Proof of Theorem 2

Below, we provide the main steps of the proof, details can be found in [5].

Proof. (sketch) Let us explain how to build the set X .

1. Given a flat counter system S and a state q from c, there is at most an
exponential number of minimal path schemas starting at q in the sense of [5,
Lemma 4]. Let Y1 be this set of minimal path schemas.

2. For each path schema P in Y1, there is a set of path schemas YP such that
the path schemas in YP have no disjunctions in guards and satisfaction of
guards can be concluded from the states, see [5, Theorem 14]. Let Y2 be this
set of unfolded path schemas and it is of cardinality at most exponential.

3. Following [5, Lemma 12], every path schema from Y2 is equivalent to a con-
strained path schema. The set X is precisely the set of constrained path
schemas obtained from all the unfolded path schemas from Y2.

Completeness of the set X is a consequence of [5, Lemma 12] and [5, Theorem
14(4–6)]. Satisfaction of the size constraints is a consequence of [5, Lemma 12]
and [5, Theorem 14(2–3)]. ⊓⊔

B Proof of Lemma 3

Proof. Let A = 〈Q,E, q0, F 〉 be a specification in BA. over the alphabet 〈at, agn, Σ〉
and Σ′ ⊆ Σ. The specification A′ = 〈Q,E′, q0, F 〉 such that L(A′) = L(A)∩(Σ′)ω is

defined as follows: for every q
ψ
−→ q′ ∈ E, we include in E′ the edge q

(
∨

a∈Σ′ ψa)∧ψ
−−−−−−−−→

q′ where ϕa is defined as a conjunction made of positive literals from a and neg-
ative literals from (at∪agn)\a. A similar transformation can be performed with
specifications in ABA.

Let φ be a formula for L among linear µ-calculus, ETL or Past LTL built
over atomic formulae in at∪agn and 〈at, agn, Σ′〉 be a constrained alphabet. The
formulae φ′ such that L(φ′) = L(φ)∩ (Σ′)ω is obtained from φ by replacing every
atomic formula ψ by

∨
{a∈Σ′|ψ∈a} ϕa. ⊓⊔

C Correctness of Algorithm 1

Proof. First assume there exists a run ρ of S starting at c0 such that ρ |= A. By
Theorem 2, there is a constrained path schema cps with an alphabet of the form
〈at, agn, Σ′〉 in X and w ∈ L(cps) such that ρ |= w. Consequently we deduce
that w ∈ L(A) and that L(cps) ∩ L(A) 6= ∅. Since L(cps) ⊆ (Σ′)ω and since
L(A) ∩ (Σ′)ω = L(A′), we deduce that L(cps) ∩ L(A′) 6= ∅. Hence the Algorithm
has an accepting run.

Now if the Algorithm 1 has an accepting run, we deduce that there exists
a constrained path schema cps with an alphabet of the form 〈at, agn, Σ′〉 in X
such that there exists a word w in L(cps) ∩ L(A′). Using the nice subalphabet
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property we deduce that w ∈ L(A) and by the last point of Theorem 2, we know
that there exists a run ρ from S starting at c0 such that ρ |= w. This allows us
to conclude that ρ |= A. ⊓⊔

D Proof of Lemma 5

Proof. Consider a FO formula φ that defines a specification over the constrained
alphabet 〈at, agn, Σ〉 with Σ = 2at∪agn . Consider a subalphabet Σ′ ⊆ Σ. Let
φ′′ be the formula obtained from φ by replacing every occurrence of p(z) by∨
{a∈Σ′|p∈a} a(z) and every occurrence of g(z) is replaced by

∨
{a∈Σ′|g∈a} a(z). It

is easy to see that, by construction, L(φ′′) = L(φ′) ∩ (Σ)ω ⊓⊔

E EF Games and Proof of Theorem 6

E.1 Ehrenfeucht-Fraïssé Games

Ehrenfeucht-Fraïssé (EF) game is a well known technique to determine whether
two structures are equivalent with respect to a set of formulae. We recall here the
definition of a EF game adapted to our context. Given N ∈ N and two ω-words
w,w′ over Σ, the main idea of the corresponding EF game is that two players, the
Spoiler and the Duplicator, plays in a turn based manner. The Spoiler begins
by choosing a word between w and w′ and a position in this word, then the
Duplicator aims at finding a position in the other word which is similar and this
during N rounds. At the end, the Duplicator wins if the set of chosen positions
respects some isomorphism. We now move to the formal definition of such a
game.

Let w and w′ be two ω-words over Σ. We define a play as a finite sequence of
triples (p1, a1, b1)(p2, a2, b2) · · · (pi, ai, bi) in ({0, 1} × N

2)∗ where for each triple
the first element describes which word has been chosen by the Spoiler (0 for
the word w), then the second element corresponds to the position chosen in w
and the third element the position chosen in w′ by the Spoiler or the Duplicator
according to the word chosen by the Spoiler. For instance if p1 = 1, this means
that at the first turn Spoiler has chosen the position b1 in w′ and Duplicator
the position a1 in w. A play of size i ∈ N is called an i-round play (a 0-round
play being an empty sequence). A strategy for the Spoiler is a mapping σS :
({0, 1} × N

2)∗ → {0, 1} × N which takes as input a play and outputs 0 or 1 for
words w or w′ respectively and a position in the word. Similarly, a strategy for
the Duplicator is a mapping σD : ({0, 1} × N

2)∗ × ({0, 1} × N) → N with the
difference being that Duplicator takes into account the position played by the
Spoiler in the current round. For all i ∈ N, a strategy σS for the Spoiler and
a strategy σD for the Duplicator, the i-round play over w and w′ following σS
and σD is defined inductively as follows: ΠσS ,σD

i (w,w′) = ΠσS ,σD

i−1 (w,w′)(p, a, b)
where if p = 0, (0, a) = σD(Π

σS ,σD

i−1 (w,w′)) and b = σS(Π
σS ,σD

i−1 (w,w′), (0, a))
and if p = 1, (1, b) = σD(Π

σS ,σD

i−1 (w,w′)) and a = σS(Π
σS ,σD

i−1 (w,w′), (1, b)).
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For N ∈ N, a N -round play (p1, a1, b1)(p2, a2, b2) · · · (pN , aN , bN) over w and
w′ is winning for Duplicator iff the following conditions are satisfied for all i, j ∈
[1, N ]:

– ai = aj iff bi = bj ,
– ai + 1 = aj iff bi + 1 = bj ,
– ai < aj iff bi < bj ,
– w(ai) = w′(bi).

A N -round EF game over the ω-words w,w′, denoted as EFN (w,w′), is said
to be winning if there exists a strategy σD for Duplicator such that for all
strategies σS of spoiler, the play ΠσS ,σD

N (w,w′) is winning for Duplicator. We
write w ≡N w′ iff the game EFN (w,w′) is winning. Theorem 17 below states
that two ω-words, the N -round game is winning iff these two ω-words satisfy
the same set of first-order formulae of quantifier height smaller than N .

Theorem 17 (EF Theorem, see e.g. [16]). For any two ω-words w,w′ over
Σ, w ≡N w′ iff w ≈N w′.

We will use EF games for FOΣ formulae to prove a stuttering theorem which will
allow us to bound the number of times each loop needs to be taken in a path
schema in order to satisfy a FOΣ formula. Note that in [7], EF games have been
introduced for the specific case of LTL specifications here also to show some
small model properties.

E.2 Stuttering Theorem for FOΣ

In this section, we prove that if in an ω-sequence w, a subword s is repeated con-
secutively a large number of times, then this ω-word and other ω-words obtained
by removing some of the repetitions of s satisfy the same set of FOΣ sentences,
this is what we call the stuttering theorem for FOΣ. Such a result will allow us
to bound the repetition of iteration of loops in path schema and thus to obtain
a model-checking algorithm for the logic FOΣ optimal in complexity. In order to
prove the stuttering theorem, we will use EF games.

In the sequel we consider a natural N ≥ 1 and two ω-words over Σ of the
following form w = w1s

Mw2, w
′ = w1s

M+1w2 ∈ Σω withM > 2N+1, w1 ∈ Σ∗, s ∈
Σ+ and w2 ∈ Σω. We will now show that the game EFN (w,w′) is winning. The
strategy for Duplicator will work as follows: at the i-th round (for i ≤ N), if the
point chosen by the Spoiler is close to another previously chosen position then
the Duplicator will choose a point in the other word at the exact same distance
from the corresponding position and if the point is far from any other position
then in the other word the Duplicator will chose a position also far away from
any other position.

Before providing a winning strategy for the Duplicator we define some in-
variants on any i-round play (with i ≤ N) that will be maintained by the Dupli-
cator’s strategy. In order to define this invariant and the Duplicator’s strategy,
let introduce a few notations:
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– a−3 = b−3 = 0; a−2 = b−2 = len(w1);
– a−1 = len(w1s

M ) and b−1 = len(w1s
M+1);

– a0 = b0 = ω.

We extend the substraction and addition operations in order to deal with N ∪
{−ω, ω} such that: α− ω = −ω, ω − α = ω and ω + α = ω if α ∈ N (no need to
define the other cases for what follows). The relation< on N∪{−ω, ω} is extended
in the obvious way. Given a i-round playΠi = (p1, a1, b1)(p2, a2, b2) · · · (pi, ai, bi),
we say that Πi respects the invariant I iff the following conditions are satisfied
for all j, k ∈ [−3, i]:

1. aj ≤ ak iff bj ≤ bk,
2. | aj − ak |< 2N+1−ilen(s) iff | bj − bk |< 2N+1−ilen(s),
3. | aj − ak |< 2N+1−ilen(s) implies aj − ak = bj − bk,
4. aj ≤ a−2 or bj ≤ b−2 implies bj = aj ,
5. aj ≥ a−1 or bj ≥ b−1 implies bj = aj + len(s),
6. a−2 < aj < a−1 or b−2 < bj < b−1 implies | aj − bj |= 0 mod len(s).

First we remark the invariant I is a sufficient condition for a play to be winning
as stated by the following lemma.

Lemma 18. If a N -round play over w and w′ respects I, then it is a winning
play for the Duplicator.

Proof. Let (p1, a1, b1)(p2, a2, b2) · · · (pN , aN , bN) be a N -round play over w and
w′ respecting I. Let i, j ∈ [1, N ]. It is easy to see that satisfaction of I implies
that ai = aj iff bi = bj, ai < aj iff bi < bj, and ai + 1 = aj iff bi + 1 = bj .
Moreover, Condition I(4–6) obviously guarantees that w(aj) = w′(bj). ⊓⊔

Given an (i−1)-round play Πi−1 = (p1, a1, b1)(p2, a2, b2) · · · (pi−1, ai−1, bi−1)
and ai ∈ N such that ai 6∈ {a−3, a−2, . . . , ai−2, ai−1}, we define left(ai) =
max(ak | k ∈ [−3, i − 1] and ak < ai) and right(ai) = min(ak | k ∈ [−3, i −
1] and ai < ak) (i.e. left(ai) and right(ai) are the closest neighbor of ai). We
define similarly left(bi) and right(bi).

We define now a strategy σ̂D for the Duplicator that respects at each round
the invariant I and this no matter what the Spoiler plays. By Lemma 18, we
can conclude that this strategy is winning for the Duplicator. Let i ∈ [1, N ] and
Πi−1 = (p1, a1, b1)(p2, a2, b2) · · · (pi−1, ai−1, bi−1) be a (i − 1)-round play. First,
we define bi = σD(Πi−1, 〈0, ai〉) that is what Duplicator answers if the Spoiler
chooses position ai in the ω-word w. We have bi = σ̂D(Πi−1, 〈0, ai〉) defined as
follows:

– If ai = aj for some j ∈ [−3, i− 1], then bi
def

= bj;
– Otherwise, let al = left(ai) and ar = right(ai):

• If ai − al ≤ ar − ai, we have bi
def

= bl + (ai − al)

• If ar − ai < ai − al, we have bi
def

= br − (ar − ai)

Similarly we have ai = σ̂D(Πi−1, 〈1, bi〉) defined as follows:
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– If bi = bj for some j ∈ [−3, i− 1], then ai
def

= aj;
– Otherwise, let bl = left(bi) and br = right(bi):

• If bi − bl ≤ br − bi, we have ai
def

= al + (bi − bl)

• If br − bi < bi − bl, we have ai
def

= ar − (br − bi)

Lemma 19. For any Spoiler’s strategy σS and for all i ∈ [0, N ], we have that

ΠσS ,σ̂D

i (w,w′) respects I.

Proof. The proof proceeds by induction on i. The base case for i = 0 is obvious
since the empty play respects I. However, we need to use the fact thatM > 2N+1

(otherwise condition I.2 might not hold).
Let σS be a Spoiler’s strategy and for every i ∈ [1, N − 1], we assume that

ΠσS ,σ̂D

i−1 (w,w′) respects I. Suppose that σS(Π
σS ,σ̂D

i−1 (w,w′)) = 〈0, ai〉 and let

bi = σ̂D(Π
σS ,σ̂D

i−1 (w,w′), 〈0, ai〉).
(1.) Let j, k ∈ [−3, i]. If j, k ∈ [−3, i − 1], then by the induction hypothesis,
aj ≤ ak iff bj ≤ bk. Otherwise, let suppose j = i and k 6= i (only remaining
interesting case). If ai = aj′ for some j′ ∈ [−3, i− 1], then bi = bj′ and therefore
ai ≤ ak iff bi ≤ bk by the induction hypothesis. Otherwise, al < ai < ar and
bl < bi < br which entails that ai ≤ ak iff bi ≤ bk.
(4.) The case j ∈ [−3, i − 1] is immediate from the induction hypothesis. Now,
suppose that a−3 ≤ ai ≤ a−2. If ai = aj for some j ∈ [−3, i − 1], then bi = bj
and a−3 ≤ aj ≤ a−2. By induction hypothesis, bi = bj = aj = ai. Otherwise,
al < ai < ar and al = bl and ar = br by induction hypothesis. Either ai − al ≤
ar − ai or ar − ai < ai − al implies that bi = ai.
(5.) The case j ∈ [−3, i − 1] is immediate from the induction hypothesis. Now,
suppose that a−1 ≤ ai. If ai = aj for some j ∈ [−3, i − 1], then bi = bj and
a−1 ≤ aj . By induction hypothesis, bi = bj = aj+len(s) = ai+len(s). Otherwise,
al < ai and bl = al + len(s) by induction hypothesis. Since ar = ω, we have
bi = bl + (ai − al) = ai + len(s).
(6.) The case j ∈ [−3, i − 1] is immediate from the induction hypothesis. Now,
let us deal with j = i. Satisfaction of (4.) and (5.) implies that a−2 < ai < a−1
iff b−2 < bi < b−1. Suppose that a−2 < ai < a−1. So, al < ai < ar and by
induction hypothesis | al − bl |= 0 mod len(s) and | ar − br |= 0 mod len(s).
If ai − al ≤ ar − ai, then bi = bl + (ai − al) and | ai − bi |=| al − bl |, whence
| ai − bi |= 0 mod len(s). Similarly, if ar − ai < ai − al, then bi = br − (ar − ai)
and | ai − bi |=| ar − br |, whence | ai − bi |= 0 mod len(s).
(2.–3.) Let j, k ∈ [−3, i]. If j, k ∈ [−3, i − 1], then by the induction hypothesis,
it is easy to verify that

– | aj − ak |< 2N+1−ilen(s) iff | bj − bk |< 2N+1−ilen(s),
– | aj − ak |< 2N+1−ilen(s) implies aj − ak = bj − bk.

Indeed, it is a consequence of the stronger properties below satisfied by induction
hypothesis:

– | aj − ak |< 2N+2−ilen(s) iff | bj − bk |< 2N+2−ilen(s),
– | aj − ak |< 2N+2−ilen(s) implies aj − ak = bj − bk.
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Otherwise, let suppose j = i and k 6= i (only remaining interesting case). If
ai = aj′ for some j′ ∈ [−3, i− 1], then by the induction hypothesis, we have

– | aj′ − ak |< 2N+2−ilen(s) iff | bj′ − bk |< 2N+2−ilen(s),
– | aj′ − ak |< 2N+2−ilen(s) implies aj′ − ak = bj′ − bk.

Again, this implies that

(I) | ai − ak |< 2N+1−ilen(s) iff | bi − bk |< 2N+1−ilen(s),
(II) | ai − ak |< 2N+1−ilen(s) implies ai − ak = bi − bk.

Now, suppose that there is no j′ ∈ [−3, i− 1] such that ai = aj′ .
Case 1: ai − al ≤ ar − ai and bi = bl + (ai − al).
Case 1.1: ak ≤ al.

– ak = al: | ai − ak |=| bi − bk | and therefore (I)-(II) holds.
– ak < al: If | al − ak |≥ 2N+1−ilen(s), by induction hypothesis | bl − bk |≥

2N+1−ilen(s) and bk < bl. So, | ai − ak |≥ 2N+1−ilen(s) and | bi − bk |≥
2N+1−i.
If | ai − al |≥ 2N+1−ilen(s), by definition of bl, | ai − al |=| bi − bl |≥
2N+1−ilen(s) and bk < bl. So, | ai − ak |≥ 2N+1−ilen(s) and | bi − bk |≥
2N+1−i.
If | al− ak |≤ 2N+1−ilen(s) and | ai− al |≤ 2N+1−ilen(s), then by induction
hypothesis | bl − bk |=| al − ak |, | ai − al |=| bi − bl |, ak < al < ai and
bk < bl < bi. So | ai − ak |=| bi − bk |, whence (I)–(II) holds.

Case 1.2: ar ≤ ak.

– | ak−ar |≥ 2N+1−ilen(s): By induction hypothesis, | bk−br |≥ 2N+1−ilen(s).
So, | ak−ai |≥ 2N+1−ilen(s) and | bk−bi |≥ 2N+1−ilen(s) since ai < ar ≤ ak
and bi < br ≤ bk.

– | ak − ar |≤ 2N+1−ilen(s): By induction hypothesis, | bk − br |=| ak − ar |.
Case 1.2.1. | ar − al |≤ 2N+2−ilen(s). By induction hypothesis, | ar − al |=|
br − bl | and therefore | br − bi |=| ar − ai |. Whence, | bk − bi |=| ak − ai |
so (I)-(II) holds.
Case 1.2.2 | ar − al |≥ 2N+2−ilen(s). By induction hypothesis, | br − bl |≥
2N+2−ilen(s). Moreover, since ai−al ≤ ar−ai, ar−ai ≥ 2N+1−ilen(s). Since
bi−bl = ai−bl, we have br−bi ≥ 2N+1−ilen(s) too. So, ak−ai ≥ 2N+1−ilen(s)
and bk − bi ≥ 2N+1−ilen(s), which guarantees (I)–(II).

Case 2: ar − ai < ai − al and bi = br − (ar − ai).
Case 2.1: ak ≥ ar. Similar to Case 1.1 by replacing al by ar, bl by br and, by
permuting ’<’ by ’>’ and ’≤’ by ’≥’ about positions.
Case 2.2: ak ≤ al. Similar to Case 1.2 by replacing ar by al, br by bl and, by
permuting ’<’ by ’>’ and ’≤’ by ’≥’ about positions. ⊓⊔

Using Lemma 18 and 19, we deduce that Duplicator has a winning strategy
against any strategy of the Spoiler in EFN (w,w′), so by Theorem 17, we can
conclude Theorem 6 [Stuttering Theorem].
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F Proof of Lemma 7

Proof. Let cps = 〈p1(l1)∗ · · · pk−1(lk−1)∗pk(lk)ω, φ(x1, . . . , xk−1)〉 be a constrained
path schema and ψ be a first-order sentence. Suppose that

p1(l1)
n[1] · · · pk−1(lk−1)

n[k−1]pk(lk)
ω ∈ L(cps) ∩ L(ψ).

Let B ⊆ [0, 2p1(size(cps))]k−1 and P1, . . . ,Pα ∈ [0, 2p1(size(cps))]k−1 defined for the
guard φ following Theorem 1. Since n |= φ, there are b ∈ B and a ∈ N

α such that
n = b+ a[1]P1 + · · ·+ a[α]Pα. Let a′ ∈ N

α defined from a such that a′[i] = a[i]
if a[i] ≤ 2qh(ψ)+1+1 otherwise a′[i] = 2qh(ψ)+1+1. Note that n′ = b+a′[1]P1+
· · ·+ a′[α]Pα still satisfies φ and for every loop i ∈ [1, k − 1], n[i] > 2qh(ψ)+1 iff
n′[i] > 2qh(ψ)+1. By Theorem 6, p1(l1)

n′[1] · · · pk−1(lk−1)n
′[k−1]pk(lk)

ω ∈ L(ψ).
Now, let us bound the values in n′.

– There are at most 2p2(size(cps)) periods.
– Each basis or period has values in [0, 2p1(size(cps))].
– Each period in n′ is taken at most 2qh(ψ)+1 + 1 times.

Consequently, each n′[i] is bounded by

2p1(size(cps)) + (2qh(ψ)+1 + 1)2p2(size(cps)) × 2p2(size(cps))

which is itself bounded by 2(qh(ψ)+2)+p1(size(cps))+p2(size(cps)). ⊓⊔

G Proof of Lemma 8

Proof. We want to show that the membership problem with first-order logic
(with unconstrained alphabets) can be solved in polynomial space in size(cps)+
size(ψ). Let cps, ψ and n ∈ N

k−1 be an instance of the problem. For i ∈ [1, k−1],

let n′[i]
def

= min(n[i], 2qh(ψ)+1 + 1). By Theorem 6, the propositions below are
equivalent:

– p1(l1)
n[1] · · · pk−1(lk−1)n[k−1]pk(lk)ω ∈ L(ψ),

– p1(l1)
n′[1] · · · pk−1(lk−1)n

′[k−1]pk(lk)
ω ∈ L(ψ).

Without any loss of generality, let us assume then that n ∈ [0, 2qh(ψ)+1 + 1]k−1.
Let us decompose w = p1(l1)

n[1] · · · pk−1(lk−1)n[k−1]pk(lk)ω as u · (v)ω where
u = p1(l1)

n[1] · · · pk−1(lk−1)n[k−1]pk and v = lk. Note that the length of u is

exponential in the size of the instance. We write ψ̂ to denote the formula ψ in
which every existential quantification is relativized to positions less than len(u)+
len(v) × 2qh(ψ). This means that every quantification ’∃ x · · · ’ is replaced by

’∃ x < (len(u)+len(v)×2qh(ψ)) · · · ’. By [17], we know that w |= ψ iff w |= ψ̂. Now,

checking w |= ψ̂ can be done in polynomial space by using a standard first-order
model-checking algorithm by restricting ourselves to positions in [0, len(u) +
len(v) × 2qh(ψ)] for existential quantifications. Such positions can be obviously
encoded in polynomial space. Moreover, note that given i ∈ [0, len(u)+ len(v)×
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Algorithm 1 FOSAT(cps,n, ψ, f)

1: if φ = a(z) then

2: Calculate the f(z)th letter b of w and return a = b.
3: else if ψ is of the form ¬ψ′ then

4: return not FOSAT(cps,n, ψ′, f)
5: else if ψ = ψ1 ∧ ψ2 then

6: return FOSAT(cps,n, ψ1, f) and FOSAT(cps,n, ψ2, f).
7: else if ψ is of the form ∃z < m ψ′ then

8: guess a position k ∈ [0,m− 1].
9: return FOSAT(cps,n, ψ′, f [z 7→ k]).

10: else if φ is of the form R(z, z′) for some R ∈ {=, <, S} then

11: return R(f(z), f(z′)).
12: end if

2qh(ψ)], one can check in polynomial time what is the ith letter of w. Details are
standard and omitted here. By way of example, the ith letter of w is the first
letter of lk iff i ≥ α and (i−α) = 0 mod len(lk)) with α = (Σj∈[1,k−1](len(pj) +
len(lj)× n[j])) + len(pj).

Polynomial space algorithm for membership problem is obtained by comput-
ing FOSAT(cps,n, ψ̂, f0) with the algorithm FOSAT defined below (f0 is a zero
assignment function). Note that the polynomial space bound is obtained since the
recursion depth is linear in size(ψ) and positions in [0, len(u)+len(v)×2qh(ψ)] can
be encoded in polynomial space in size(cps)+size(ψ). Furthermore, since model-
checking ultimately periodic words with first-order logic is PSpace-hard [17], we
deduce directly the lower bound for the membership problem with FO. ⊓⊔

H Proof of Theorem 10

First, we establish the result below.

Lemma 20. Let w ∈ L(B) for a Büchi automaton B = 〈Q, Σ, q0, ∆, F 〉, such

that w = w1.u
2.|Q|k .w2 for some k, then there exist an integer K ∈ [1, |Q|] such

that for all N ∈ [1, |Q|k−2], w1.u
2.|Q|k−(K×N).w2 ∈ L(B).

Proof. Let B = 〈Q, Σ, q0, ∆, F 〉. Since w = w1.u
2.card(Q)k .w2 ∈ L(B), there ex-

ists an accepting run ρ ∈ Qω for w. We will construct an accepting run for

w′ = w1.u
2.card(Q)k−(K×N).w2 in B using ρ. In w, u is repeated 2.card(Q)k

times. Consider the first card(Q) + 1 iterations of u. Let the positions where
the iterations of u starts be m1,m2, · · · ,mcard(Q)+1. By pigeon-hole principle,
there exists some states q ∈ Q such that for some i < j ∈ [1, card(Q) + 1],
ρ(mi) = ρ(mj) = q. Let α1 = j − i + 1. We consider card(Q) + 1 itera-
tions of u after mj . We proceed as before to obtain α2 and so on. Since u
is repeated 2.card(Q)k times, we will obtain at least card(Q)k−1 (possibly dif-
ferent) values as α1, α2, · · · , αcard(Q)k−1 ∈ [1, card(Q)] because card(Q)k−1 ×

(card(Q) + 1) ≤ 2.card(Q)k. Again, by pigeon-hole principle, we know that
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there exists j1, j2, . . . , jcard(Q)k−2 ∈ [1, card(Q)k−1] such that αj1 = αj2 =

. . . = αj
card(Q)k−2

= K for some K ∈ [1, card(Q)] because K × card(Q)k−2 ≤

card(Q)k−1. Note that for each such αj , j ∈ {j1, j2, . . . , jcard(Q)k−2}, we have
a corresponding different loop structure in ρ where we have positions a and b
in w such that w[a, b] = (u)K and ρ(a) = ρ(b) = q for some q ∈ Q as shown
in Figure 1. Hence, the run ρ(1) . . . ρ(a).ρ(b) . . . is still an accepting run in B

for w1.u
2.card(Q)k−(K).w2. Since, there are card(Q)k−2 such loops, it is easy to

see that for every N ∈ [1, card(Q)k−2], we can remove the loops corresponding to

αj1 , αj2 , . . . , αjN and have an accepting run for the wordw1.u
2.card(Q)k−(K×N).w2

in B. ⊓⊔

q1 q2 qj1

α1

qj2

α2

qj
|Q|k−2

α|Q|k−2

qn
w1 um1 um2

uK uK

umn

uK

w2

Fig. 1. Shape of a sample run

Proof (Theorem 10). Since L(cps) ∩ L(B) 6= ∅, there exist an infinite word w
such that w ∈ L(B) ∩ L(cps). Let y ∈ N

k−1 be the vector such that w =
p1(l1)

y[1] . . . pk−1(lk−1)
y[k−1]pkl

ω
k . We will now prove that either y ∈ [0, 2pol1(size(cps))+

2.size(B)k × 2pol1(size(cps))+pol2(size(cps))]k−1 or we can construct another word

w′ = p1(l1)
y′[1] . . . pk−1(lk−1)

y′[k−1]pkl
ω
k

such that y′ ∈ [0, 2pol1(size(cps)) + 2.size(B)k × 2pol1(size(cps))+pol2(size(cps))]k−1

and w′ ∈ L(cps) ∩ L(B). Since, y |= φ(x1, . . . , xk−1) and φ(x1, . . . , xk−1) is a
quantifier-free Presburger formula, we know that there exist b,P1,P2 · · ·Pα ∈
[0, 2pol1(size(cps))]k−1 and α ≤ 2pol2(size(cps)) such that y = b + Σi∈[1,α]ai.Pi

for some (a1, a2, . . . , aα) ∈ N
α. Let us assume that y /∈ [0, 2pol1(size(cps)) +

2.size(B)k × 2pol1(size(cps))+pol2(size(cps))]k−1 and hence there exists some aj , j ∈
[1, α] such that aj > 2.card(Q)k. We would like to find a such that y′ =
b + Σi∈[1,j−1]ai.Pi + (aj − a)Pj + Σi∈[j+1,α]ai.Pi and w′ = p1(l1)

y’[1] . . . pk−1

(lk−1)
y′[k−1]pkl

ω
k ∈ L(B) ∩ L(cps).

1. For any a ≤ aj , we have that, w′ with y′ = b + Σi∈[1,j−1]ai.Pi + (aj − a)
Pj + Σi∈[j+1,α]ai.Pi, w

′ ∈ L(cps). Indeed by selecting any a ∈ [aj ,

aj − 2.card(Q)k], we will obtain y′ ∈ [0, 2pol1(size(cps)) + 2.size(B)k ×
2pol1(size(cps))+pol2(size(cps))]k−1 where w′ ∈ L(cps).
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2. For showing that there exists a value for a such that y′ ∈ [0, 2pol1(size(cps)) +
2.size(B)k×2pol1(size(cps))+pol2(size(cps))]k−1 and w′ ∈ L(B) we will use Lemma
20. For each m ∈ [1, k − 1], we take rm = (lm)Pj [m] i.e. rm is Pj [m] copies
of lm. Note that by our assumption, for each m ∈ [1, k − 1] we can fac-
tor w as w = wm1 .(rm)am .wm2 where am ≥ 2.card(Q)k. Thus, applying
Lemma 20, we get that there exist Km ∈ [1, card(Q)] such that for any
Nm ∈ [1, card(Q)k−2], w′′ = wm1 .(rm)am−(Nm×Km).wm2 ∈ L(B). For each
m ∈ [1, k] we take Nm = K1 ×K2 · · ·Km−1 ×Km+1 · · ·Kk−1 which is less
than or equal to card(Q)k−2. It is clear that for each m ∈ [1, k − 1], the
number of iteration of rm we reduce is Nm × Km and is same for all m,
Nm×Km = K1×K2 · · ·Kk−1. Combining the result of Lemma 20 for every
loop lm, m ∈ [1, k − 1] and taking a = K1 ×K2 · · ·Kk−1 in y′ we obtain w′

such that w′ ∈ L(B).

We can continue the process to obtain y′ ∈ [0, 2pol1(size(cps)) + 2.size(B)k ×
2pol1(size(cps))+pol2(size(cps))]k−1 and w′ ∈ L(B). ⊓⊔

I Proof of Lemma 11

Proof. Consider any given specification A in BA, a constrained path schema
cps.We would first construct the Büchi automaton BA corresponding to A as
explained in Section 2.3. Recall, that A in BA has transitions labelled with
Boolean combination over at ∪ agn whereas the equivalent BA has transitions
labelled with elements of Σ = 2at∪agn . Hence, in effect, BA could have an ex-
ponential number of transitions. On the other hand by definition cps is defined
over an alphabet Σ′ ⊆ Σ. By Lemma 3, we know that BA has the nice subal-
phabet property. Hence, we can transform A over Σ to A′ over Σ′ in polynomial
time. The Büchi automata BA′ obtained from A′ following the construction in
Section 2.3 has transitions labelled by letters from Σ′. Clearly in this case the
number of transitions in BA′ is polynomial in size(cps). We obtain the following
equivalences,

– using Lemma 3 and the fact that L(cps) ⊆ (Σ′)ω , L(A)∩L(cps) is non-empty
iff w ∈ L(A′) ∩ L(cps) is non-empty.

– Since, BA′ is obtained from A′ following the construction from Section 2.3,
L(BA′) ∩ L(cps) is non-empty iff w ∈ L(A′) ∩ L(cps) is non-empty.

Checking L(BA′) ∩ L(cps) amounts to guessing n ∈ fBA(BA′ , cps) and checking
for w = p(l1)

n[1] · · · pk−1(lk−1)n[k−1]pklωk , w ∈ L(BA′) ∩ L(cps). We know that
checking w ∈ L(BA′) ∩ L(cps) is in PTime and the construction of BA′ from A
takes only polynomial time. Thus, checking L(A) ∩ L(cps) is non-empty can be
done in polynomial time. ⊓⊔

J proof of Lemma 13

Proof. First we prove that the membership problem for L having the nice BA
property is in PSpace. Let A ∈ L over the constrained alphabet 〈at, agn, Σ〉 and
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let w = p1(l1)
n[1] · · · pk−1(lk−1)n[k−1]pk(lk)ω be a word over Σ. We would like to

check whether w ∈ L(A) which is equivalent, thanks to the nice BA property, to
check whether w ∈ L(BA).

To verify if w ∈ L(BA), we try to find a “lasso” structure in Büchi automaton.
Assume BA = 〈Q, Σ, ∆, qi, F 〉. We proceed as follows. First, we guess a state
qf ∈ F and a position j ∈ [1, len(lk)]. Then we consider the two finite state
automata A1 = 〈Q, Σ, q0, ∆, {qf}〉 and A2 = 〈Q, Σ, qf , ∆, {qf}〉. And our method
returns true iff both the following conditions are true:

1. p1(l1)
y[1] . . . pk−1(lk−1)

y[k−1]pklk[1, j] ∈ L(A1).
2. L(A2) ∩ L(lk[j + 1, len(lk)]l

∗
klk[1, j]) 6= ∅.

We will now show the correctness of the above procedure. First let us assume
that w = p1(l1)

y[1] . . . pk−1(lk−1)
y[k−1]pkl

ω
k ∈ L(BA). Thus, there is an accepting

run ρ ∈ ∆ω for w in BA. According to the Büchi acceptance condition there
exists a state qf ∈ F which is visited infinitely often. In w only lk is taken
infinitely many times. Thus, lk being of finite size, there exists a position j ∈

[1, len(lk)] such that transitions of the form q
lk(j)
−−−→ qf for some q ∈ Q occurs

infinitely many times in ρ. Thus, for ρ to be an accepting run, there exists
w′ = L(p1(l1)

y[1] . . . pk−1(lk−1)
y[k−1]pklk[1, j]), which has a run in BA from qi

to qf and there must exists words w′′ ∈ L(lk[j + 1, len(lk)]l
∗
klk[1, j]) which has

a run from qf to qf . Hence we deduce that w′ ∈ L(A1) and L(A2) ∩ L(lk[j +
1, len(lk)]l

∗
klk[1, j]) 6= ∅. Thus, there exists at least one choice of qf and j, for

which both the checks return true and hence the procedure returns true.
Now let us assume that the procedure returns true. Thus, there exists qf ∈ F

and j ∈ [1, len(lk)] such that w1 = p1(l1)
y[1] . . . pk−1(lk−1)

y[k−1]pklk[1, j] is in
L(A1) and L(A2) ∩ L(lk[j + 1, len(lk)]l

∗
klk[1, j]) 6= ∅. From the second point, we

deduce that there exists a word w2 = lk[j+1, len(lk)]l
n
k lk[1, j] ∈ L(A2) for some

n. Consider the word w = w1.(w2)
ω. First we have directly that w ∈ L(cps).

And by construction of A1 and A2 we know that w1 has a run in BA starting
from qi to qf and w2 has a run in BA starting from qf to qf . Since qf is an
accepting state of BA, we deduce that w ∈ L(BA).

The proof that the above procedure belongs to PSpace is standard and used
the nice BA property which allows us to perform the procedure "on-the-fly".
First note that for A in L having the nice BA property, the corresponding Büchi
automaton BA can be of exponential size in the size of the A, so we cannot
construct the transition relation of BA explicitly, instead we do it on-the-fly. We
consider the different steps of the procedure and show that they can be done in
polynomial space.

1. A1 and A2 are essentially copies of BA and hence their transition relations
are also not constructed explicitly. But, by the nice BA property, their states
can be represented in polynomial space.

2. Checking p1(l1)
y[1] . . . pk−1(lk−1)

y[k−1]pklk[1, j] ∈ L(A1) can be done by sim-
ulating A1 on this word. Note that for simulating A1, at any position we
only need to store the previous state and the letter at current position to
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obtain the next state of A1. Thus, this can be performed in polynomial space
in size(A) and size(cps) + size(y).

3. Checking L(A2)∩L(lk[j+1, len(lk)]l
∗
klk[1, j]) 6= ∅ can be done by construct-

ing a finite state automaton Aloop for L(lk[j + 1, len(lk)]l
∗
klk[1, j]) and by

checking for reachability of final state in the automaton A2 × Aloop. Note
that size(Aloop) is polynomial, but since size(A2) can be of exponential size,
size(A2 ×Aloop) can also be of exponential magnitude. However, the graph
accessibility problem (GAP) is in NLogSpace, so L(A2)∩L(Aloop) 6= ∅ can
also be done in nondeterministic polynomial space.

Thus, the whole procedure can be completed in nondeterministic polynomial
space and by applying Savitch’s theorem, we obtain that for any L, satisfying
the nice BA property, the membership problem for L having the nice BA prop-
erty is in PSpace.

Now we will prove that the intersection non-emptiness problem for L having
the nice BA property is in PSpace too. Let A in L with the nice BA property
and let cps = 〈p1(l1)∗ · · · pk−1(lk−1)∗pk(lk)ω, φ(x1, . . . , xk−1)〉 be a constrained
path schema. Thanks to the nice BA property we have that L(cps) ∩ L(A) 6= ∅
iff L(cps)∩ L(BA) 6= ∅. Using Theorem 10 we have L(cps)∩ L(BA) 6= ∅ iff there
exists y ∈ [0, fBA(BA, cps)]k−1 such that p1(l1)

y[1] . . . pk−1(lk−1)
y[k−1]pkl

ω
k ∈

L(BA)∩L(cps) where fBA(BA, cps) is equal to 2pol1(size(cps))+2.card(Q)size(cps)×
2pol1(size(cps))+pol2(size(cps)) (Q being the set of states of BA whose cardinality is,
thanks to the nice BA property, at most exponential in the size of A). Hence our
algorithm amounts to guess some y ∈ [0, fBA(BA, cps)]k−1 and check whether
w = p1(l1)

y[1] · · · pk−1(lk−1)y[k−1]pk(lk)ω ∈ L(cps)∩L(A). Since the membership
problem for A can be done in PSpace and since the y[i] can be encoded in
polynomial space in the size of A and CPS, we deduce that the intersection
non-emptiness problem for L with the nice BA property is in PSpace. ⊓⊔

K Proof of Theorem 15

Proof. (II) is direct consequence of (I).
First, we recall that an alternating finite automaton is a structure of the

form A = (Q, Σ, δ, q0, F ) such that Q and Σ are finite nonempty sets, δ : Q ×
Σ → B

+(Q) is the transition function (B+(Q) is the set of positive Boolean
formulae built over Q), q0 ∈ Q and F ⊆ Q. The acceptance predicate Acc ⊆
Q × Σ∗ is defined by induction on the length of the second component so that
(1) 〈qf , ε〉 ∈ Acc whenever qf ∈ F and (2) 〈q, a · w〉 ∈ Acc iff v |= δ(q, a) where
v is the Boolean assignment such that v(q′) = ⊤ iff 〈q′, w〉 ∈ Acc. We write
L(A) to denote the language {w ∈ Σ∗ : 〈q0, w〉 ∈ Acc} and more generally,

L(A, q)
def

= {w ∈ Σ∗ : 〈q, w〉 ∈ Acc}. It has been shown in [9] that checking
whether an alternating finite automaton A with a singleton alphabet has a non-
empty language L(A) is PSpace-hard. Without loss of generality, we can assume
that (⋆) q0 6∈ F , (⋆⋆) for every qf ∈ F , δ(qf , a) =⊥ and (⋆ ⋆ ⋆) for every q ∈ Q,
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δ(q, {a}) 6= ⊤ , assuming that a is the only letter, and still preserves PSpace-
hardness. Indeed, let A = (Q, {a}, δ, q0, F ) be an alternating finite automaton
andA′ = (Q′, {a}, δ′, qnew0 , {qnewf }) be its variant such thatQ′ = Q⊎{qnew0 , qnewf },
δ′(qnew0 , a) = q0, δ

′(qnewf , a) =⊥ and for every q ∈ Q, δ′(q, a) is obtained from
δ(q, a) by simultaneously replacing every occurrence of qf ∈ F by (qf ∨ qnewf ).
In the case, δ(q, a) = ⊤ with q ∈ Q, δ′(q, a) is defined as q ∨ qnewf . It is clear
from the construction that A′ follows the conditions of our assumption and
L(A′) = a · L(A); whence L(A) is non-empty iff L(A′) is non-empty.

In order to prove the result for ABA, it is sufficient to observe that given an
alternating finite automaton A built over the singleton alphabet {a}, one can
build in logarithmic space an alternating Büchi automaton A′ over the alphabet
{a, b} such that L(A′) = L(A)·{b}ω . Roughly speaking, the reduction consists in
taking the accepting states of A and in letting them accept {b}ω in A′. PSpace-
hardness of the intersection non-emptiness problem for ABA is obtained by
noting that L(A) is non-empty iff L(〈a∗ · bω,⊤〉) ∩ L(A′) 6= ∅.

Now, let us deal with µTL. The PSpace-hardness is essentially obtained by
reducing nonemptiness problem for alternating finite automata with a singleton
alphabet (see e.g. [9]) into the vectorial linear µ-calculus with a fixed simple
constrained path schema. Reduction in polynomial-time into linear µ-calculus is
then possible when formula sizes are measured in terms of numbers of subformu-
lae. This is a standard type of reduction (see e.g. [27, Section 5.4]); we provide
details below not only to be self-contained but also because we need a limited
number of resources: no greatest fixed point operator (e.g. no negation of least
fixed point operator) and we then use a simple path schema. In the sequel, for
ease of presentation, we consider this latter class of alternating finite automata
and we present a logarithmic-space reduction into the intersection non-emptiness
problem with linear µ-calculus. More precisely, for every alternating finite au-
tomaton A built over the singleton alphabet {{p}}, we build a formula φA in
the linear µ-calculus (without X−1 and the greatest fixed-point operator ν) such
that L(A) is non-empty iff there is {p} ·{p}n1 · ∅ω in L(cps) with the constrained
path schema cps = 〈{p} · {p}∗ · ∅ω,⊤〉 and {p} · {p}n1 · ∅ω |= φA. In order to
define φA, we build first an intermediate formula in the vectorial version of the
linear µ-calculus, see e.g. similar developments in [27, Section 5.4], and then
we translate it into an equivalent formula in the linear µ-calculus by using the
well-known Bekič’s Principle.

LetA = (Q, {{p}}, δ, q0, F ) be a alternating finite automaton with a singleton
alphabet such that q0 6∈ F , and for every qf ∈ F , δ(qf , {p}) =⊥. We order the
states of Q \ F with q1, . . . , qα such that q1 is the initial state.

We define the formulae in the vectorial version of linear µ-calculus ψ0
1 , . . . ,

ψ0
α, ψ1

1 , . . . , ψ1
α−1, . . . , ψi1, . . . , ψiα−i, . . . , ψα−11 and such that µ z1 · ψ

α−1
1 be-

longs to the (standard) linear µ-calculus. Such formulae will satisfy the following
conditions.

(I) For all n ≥ 1, {p}n ∈ L(A) iff {p}n · ∅ω |= µ〈z1, . . . , zα〉 〈ψ0
1 , . . . , ψ

0
α〉 · z1.

(II) For all j ∈ [0, α − 1], µ〈z1, . . . , zα−j〉 〈ψ
j
1, . . . , ψ

j
α−j〉 · z1 is equivalent to

µ〈z1, . . . , zα−j−1〉 〈ψ
j+1
1 , . . . , ψj+1

α−j−1〉 · z1.
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(III) Consequently, for all n ≥ 1, {p}n ∈ L(A) iff {p}n · ∅ω |= µ z1 ·ψ
α−1
1 and we

pose φA = µ z1 · ψ
α−1
1 .

Let us define below the formulae: the substitutions are simple and done hi-
erarchically.

(init) For every i ∈ [1, α], ψ0
i is obtained from δ(qi, {p}) by substituting each

qj ∈ Q\F by Xzj and each qf ∈ F by X¬p, and then by taking the conjunction
with p. So, ψ0

i can be written schematically as p ∧ δ(qi, {p})[qj ← Xzj , qf ←
X¬p].

(ind) For every j ∈ [1, α− 1], for every i ∈ [1, α− j], ψji is obtained from ψj−1i

by substituting every occurrence of zα−j+1 by µzα−j+1 ψ
j−1
α−j+1.

Note that µ z1 · ψ
α−1
1 can be built in logarithmic space in the size of A since

formulae are represented as DAGs (their size is the number of subformulae) and
for all j ∈ [1, α− 1] and i ∈ [1, α− j], ψji has no free occurrences of zα−j+1, . . . ,
zα.

It remains to check that (I)–(III) hold. First, observe that (III) is a direct
consequence of (I) and (II). By Bekič’s Principle, see e.g. [1, Section 1.4.2],
µ〈z1, . . . , zj〉 〈ϕ1(z1, . . . , zj), . . . , ϕj(z1, . . . , zj)〉 · z1 is equivalent to

µ〈z1, . . . , zj−1〉 〈ϕ1(z1, . . . , zj−1, ϕ
′), . . . , ϕj−1(z1, . . . , zj−1, ϕ

′)〉 · z1

where ϕ′ = µzj ϕj(z1, . . . , zj). Note that the substitution performed to build the
formula follows exactly the same principle. For every j ∈ [1, α − 1], we obtain
〈ψj1, . . . , ψ

j
α−j〉 by replacing zα−j+1 by µzα−j+1 ψ

j−1
α−j+1 in 〈ψj−11 , . . . , ψj−1α−j+1〉.

Thus by Bekič’s Principle,

µ〈z1, . . . , zα−j〉 〈ψ
j
1, . . . , ψ

j
α−j〉 · z1 ⇔ µ〈z1, . . . , zα−j−1〉 〈ψ

j+1
1 , . . . , ψj+1

α−j−1〉 · z1

is valid for all j ∈ [0, α− 1]. It remains to verify that (I) holds true.
In vectorial linear µ-calculus, formulae with outermost fixed-point opera-

tors are of the form µ〈z1, . . . , zβ〉〈φ1, . . . , φβ〉 · zj with j ∈ [1, β]. Whereas fixed
points in linear µ-calculus are considered for monotone functions over the com-
plete lattice 〈2N,⊆〉, fixed points in vectorial linear µ-calculus are considered for
monotone functions over the complete lattice 〈(2N)β ,⊆〉, where 〈Y1, . . . , Yβ〉 ⊆
〈Y ′1 , . . . , Y

′
β〉 iff for every i ∈ [1, β], we have Yi ⊆ Y ′i . So, the satisfaction relation is

defined as follows. Given a model σ ∈ (2AT)ω, σ, i |=f µ〈z1, . . . , zβ〉〈φ1, . . . , φβ〉·zj
(assuming that the variables zk occurs positively in the φl’s) iff i ∈ Zµj where

〈Zµ1 , . . . , Z
µ
β 〉 is the least fixed point of the monotone function Ff,σ : (2N)β →

(2N)β defined by Ff,σ(Y1, . . . ,Yβ) = 〈Y ′1, . . . ,Y
′
β〉 where

Y ′l
def

= {i′ ∈ N : σ, i′ |=f [z1←Y1,...,zβ←Yβ ] φl}

It is well-known that the least fixed point 〈Zµ1 , . . . , Z
µ
β 〉 can be obtained by an it-

erative process: 〈Z0
1 , . . . , Z

0
β〉

def

= 〈∅, . . . , ∅〉, 〈Zi+1
1 , . . . , Zi+1

β 〉
def

= Ff,σ(Zi1, . . . , Z
i
β)

for all i ≥ 0 and, 〈Zµ1 , . . . , Z
µ
β 〉 =

⋃
i〈Z

i
1, . . . , Z

i
β〉.
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Let σn be the model {p}n ·∅ω with n > 0, f∅ be the constant assignment equal
to ∅ everywhere and Ff∅,σn

be the monotone function Ff∅,σn
: (2N)α → (2N)α

defined from µ〈z1, . . . , zα〉 〈ψ
0
1 , . . . , ψ

0
α〉 · z1.

Let us show by induction that for every i ∈ [1, n], the ith iterated tuple
〈Zi1, . . . , Z

i
α〉 verifies that for every l ∈ [1, α], u ∈ Zil iff u ∈ [n − i, n − 1] and

{p}n−u ∈ L(A, ql).
Base Case: i = 1. The propositions below are equivalent (l ∈ [1, α]):

– u ∈ Z1
l ,

– σn, u |=f∅[z1←∅,...,zα←∅] ψ
0
l (by definition of Ff∅,σn

),
– σn, u |=f∅[z1←∅,...,zα←∅] p ∧ δ(qi, {p})[qj ← Xzj , qf ← X¬p] (by definition of
ψ0
l ),

– σn, u |= p ∧ δ(ql, {p})[qj ←⊥, qf ← X¬p] (by definition of |=),
– σn, u |= p and there is a Boolean valuation v : Q → {⊥,⊤} such that for

every q ∈ (Q \ F ), we have v(q) =⊥ and v |= δ(ql, {p}),
– σn, u |= p, σn, u + 1 |= ¬p and 〈ql, {p}〉 ∈ Acc (by definition of Acc and by

assumption (⋆ ⋆ ⋆)),
– u = n− 1 and {p}n−u ∈ L(A, ql) (by definition of σn and L(A, ql)).

Before proving the induction, we observe that we can also show by induction,
that for all l ∈ [1, α] and i, Zil ⊆ [n− i, n− 1] (†).
Induction Step: Now let us assume that for some i ∈ [1, n], the ith iterated tuple
〈Zi1, . . . , Z

i
α〉 verifies that for every l ∈ [1, α], u ∈ Zil iff u ∈ [n − i, n − 1] and

{p}n−u ∈ L(A, ql). We will show that the same holds true for (i+1)th iteration
〈Zi+1

1 , . . . , Zi+1
α 〉. Since Zil ⊆ Zi+1

l (monotonicity), for every u ∈ Zi+1
l ∩ Zil ,

we have u ∈ [n − i − 1, n − 1] and {p}n−u ∈ L(A, ql) (since [n − i, n − 1] ⊆
[n−i−1, n−1]). Similarly, if u ∈ [n−i, n−1] and {p}n−u ∈ L(A, ql), then u ∈ Zil
by induction hypothesis and therefore u ∈ Zi+1

l . Hence, it remains to show that
u ∈ (Zi+1

l \ Zil ) iff u = n− i − 1 and {p}n−u ∈ L(A, ql) (i.e. {p}i+1 ∈ L(A, ql)).
By (†), it is sufficient to show that (n− i− 1) ∈ Zi+1

l iff {p}i+1 ∈ L(A, ql).
The propositions below are equivalent (l ∈ [1, α], i ≥ 1, n− i− 1 ≥ 0):

– (n− i− 1) ∈ Zi+1
l ,

– σn, n− i− 1 |=f∅[z1←Zi
1,...,zα←Z

i
1]
ψ0
l (by definition of F i+1

f∅,σn
),

– σn, n − i − 1 |=f∅[z1←Zi
1,...,zα←Z

i
1]

p ∧ δ(qi, {p})[qj ← Xzj , qf ← X¬p] (by

definition of ψ0
l ),

– σn, n− i− 1 |= p and there is a Boolean valuation v : Q→ {⊥,⊤} such that
1. for every ql′ ∈ (Q \ F ), we have v(ql′) = ⊤ iff n− i ∈ Zil′ ,
2. for every qf ∈ F , v(qf ) =⊥,
v |= δ(ql, {p}) (by definition of |= and i ≥ 1),

– there is v : Q→ {⊥,⊤} such that
1. for every ql′ ∈ (Q \ F ), we have v(ql′) = ⊤ iff n− i ∈ [n − i, n− 1] and
〈ql′ , {p}i〉 ∈ Acc,

2. for every qf ∈ F , v(qf ) =⊥,
and v |= δ(ql, {p}) (by induction hypothesis and since n− i− 1 ∈ [0, n− 1]),

– there is v : Q→ {⊥,⊤} such that
1. for every ql′ ∈ (Q \ F ), we have v(ql′) = ⊤ iff 〈ql′ , {p}i〉 ∈ Acc,
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2. for every qf ∈ F , v(qf ) =⊥

and v |= δ(ql, {p}) (by propositional reasoning),

– there is v : Q→ {⊥,⊤} such that

1. for every ql′ ∈ (Q \ F ), we have v(ql′) = ⊤ iff 〈ql′ , {p}i〉 ∈ Acc,
2. for every qf ∈ F , v(qf ) = ⊤ iff 〈qf , {p}i〉 ∈ Acc,

and v |= δ(ql, {p}) (since i ≥ 1, δ(qf , {p}) =⊥ and 〈qf , {p}i〉 6∈ Acc),
– 〈ql, {p}i+1〉 ∈ Acc (by definition of Acc),

– {p}i+1 ∈ L(A, ql).

Thus, for every i ∈ [1, n], the ith iterated tuple 〈Zi1, . . . , Z
i
α〉 verifies that

for every l ∈ [1, α], u ∈ Zil iff u ∈ [n − i, n − 1] and {p}n−u ∈ L(A, ql). So,
{p}n ∈ L(A) iff 0 ∈ Zn1 . Since 〈Zµ1 , . . . , Z

µ
α〉 is precisely equal to 〈Zn1 , . . . , Z

n
α〉

because of the simple structure of σn (see (†), we conclude that {p}n ∈ L(A) iff
σn, 0 |= µ〈z1, . . . , zα〉 〈ψ0

1 , . . . , ψ
0
α〉 · z1, whence (I) holds.

From (III), we conclude that L(A) is non-empty iff there is {p} · {p}n1 · ∅ω in
L(cps) with cps = 〈{p} · {p}∗ · ∅ω,⊤〉 such that {p} · {p}n1 · ∅ω |= φA. Since cps

and φA can be computed in logarithmic space in the size of A, this provides a
reduction from the nonemptiness problem for alternating finite automata with
a singleton alphabet to the intersection non-emptiness problem with linear µ-
calculus. Hence, the intersection non-emptiness problem is PSpace-hard (we use
only a fixed constrained path schema and a formula without past-time operators
and without greatest fixed-point operator). ⊓⊔

L Proof of Corollary 16

Proof. The proof takes advantage of a variant of Theorem 2 (whose proof is
also based on developments from [5]) in which initial counter values are replaced
by variables. Below, we prove the results for BA, which immediately leads to a
similar result for ABA, ETL and µTL.

Let S be a flat counter system of dimension n built over atomic constraints
in at∪ agn, q be a control state and A be a specification in BA (i.e. a Büchi au-
tomaton whose underlying constrained alphabet is 〈at, agn, Σ〉). A parameterized
constraint path schema (PCPS) is defined as a constrained path schema except
that the second argument (a guard) has also the free variables z1, . . . ,zn dedi-
cated to the initial counter values. Remember that a constrained path schema
has already a constraint about the number of times loops are visited. In its pa-
rameterized version, this constraint expresses also a requirement on the initial
counter values. Following the proof of Theorem 2, one can construct in exponen-
tial time a set X of parameterized constrained path schemas such that:

– Each parameterized constrained path schema pcps in X has an alphabet of
the form 〈at, agn, Σ′〉 (Σ′ may vary) and pcps is of polynomial size.

– Checking whether a parameterized constrained path schema belongs to X
can be done in polynomial time.
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– For every run ρ from 〈q,v〉, there is a parameterized constrained path schema
pcps and w ∈ L(pcps[v]) such that ρ |= w where pcps[v] is the contrained
path obtained from pcps by replacing the variables z1, . . . ,zn by the counter
values from v.

– For every parameterized constrained path schema pcps, for every counter
values v, for every w ∈ L(pcps[v]), there is a run ρ from 〈q,v〉 such that
ρ |= w.

The existential Presburger formula φ(z1, . . . , zn) has the form below

∨

pcps=〈·,ψ〉∈X

∨

qinit,q,(lk)ω∈L(A′
q)

(∃ y1, . . . , yM ∃ x1, . . . , xk−1

ψqinit,q(y1, . . . , yM ) ∧ (y1 = α1
0 + α1

1x1 + · · ·+ α1
k−1xk−1) ∧ · · ·

. . . ∧ (yM = αM0 + αM1 x1 + · · ·+ αMk−1xk−1) ∧ ψ(x1, . . . , xk−1, z1, . . . , zn))

where

1. 〈at, agn, Σ′〉 is the alphabet of pcps,M = card(Σ′) and by the nice subalphabet
property, there is a specification A′ such that L(A′) = L(A) ∩ (Σ′)ω.

2. qinit is an initial state of A′ and q is a state of A′.
3. ψqinit,q(y1, . . . , yM ) is the quantifier-free Presburger formula for the Parikh

image of finite words over the alphabet Σ′ accepted by A′ (viewed as a finite-
state automaton) with initial state qinit and final state q. ψqinit,q(y1, . . . , yM )
is of polynomial size in the size of Büchi automaton.

4. pcps = 〈p1(l1)∗ · · · pk−1(lk−1)∗pk(lk)ω , ψ(x1, . . . , xk−1, z1, . . . , zn)〉.
5. For each letter aj , we write αM0 , . . . , αMk−1 to denote the natural numbers

such that if each loop i in pcps is taken xi times, then the letter aj is

visited αj0 + αj1x1 + · · · + αjk−1xk−1 times along p1(l1)
∗ · · · pk−1(lk−1)∗pk.

Those coefficients can be easily computed from p1(l1)
∗ · · · pk−1(lk−1)∗pk (for

instance αj1 is the number of times the letter aj is present in the first loop).
6. Finally, observe that checking whether (lk)

ω ∈ L(A′q) where A′q is defined as
the specification A′ in which the unique initial state is q, amounts to perform
a nonemptiness test between two Büchi automata.

FO admits a similar proof but it is based on Theorem 6 (actually the proof
is much simpler because the number of times loops can be visited depends es-
sentially on a threshold value). For FO, it is sufficient to consider the formula
below:

∨

pcps=〈p1(l1)∗···pk−1(lk−1)∗pk(lk)ω,ψ〉∈X

∨

y s.t. p1l
y[1]
1 p2l

y[2]
2 ...l

y[k−1]
k−1 pkl

ω
k
|=A′

∃ y1 · · · yk−1 ψ(y1, . . . , yk−1, z1, . . . , zn) ∧ ψ1 ∧ · · · ∧ ψk−1

where

1. pcps = 〈p1(l1)∗ · · · pk−1(lk−1)∗pk(lk)ω , ψ(x1, . . . , xk−1, z1, . . . , zn)〉,

29



2. 〈at, agn, Σ′〉 is the alphabet of pcps and by the nice subalphabet property,
there is a specification A′ such that L(A′) = L(A) ∩ (Σ′)ω .

3. the third generalized disjunction deals with y ∈ [0, 2size(A
′)+1 + 1]k−1.

4. For i ∈ [1, k− 1], ψi
def

= (y1 = α) if y[i] < 2size(A
′)+1+1 otherwise ψi

def

= (yi ≥
2size(A

′)+1 + 1.
⊓⊔
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