Abstract
We present a new efficient algorithm to generate all nonisomorphic automata with given numbers of states and input letters. The generation procedure may be restricted effectively to strongly connected automata. This is used to verify the Černý conjecture for all binary automata with n ≤ 11 states, which improves the results in the literature. We compute also the distributions of the length of the shortest reset word for binary automata with n ≤ 10 states, which completes the results reported by other authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010)
Ananichev, D., Gusev, V., Volkov, M.: Primitive digraphs with large exponents and slowly synchronizing automata. In: Zapiski Nauchnyh Seminarov POMI (Kombinatorika i Teorija Grafov. IV), vol. 402, pp. 9–39 (2012) (In Russian)
Berlinkov, M.: Approximating the minimum length of synchronizing words is hard. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 37–47. Springer, Heidelberg (2010)
Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Computing 19, 500–510 (1990)
Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press (1973)
Harrison, M.: A census of finite automata. Canadian Journal of Mathematics 17, 100–113 (1965)
Kisielewicz, A., Kowalski, J., Szykuła, M.: A Fast Algorithm Finding the Shortest Reset Words. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 182–196. Springer, Heidelberg (2013)
Koršunov, A.D.: On the number of non-isomorphic strongly connected finite automata. Journal of Information Processing and Cybernetics 22(9), 459–462 (1986)
Kudałcik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert Systems with Applications 39(14), 11746–11757 (2012)
Liskovets, V.A.: Enumeration of non-isomorphic strongly connected automata. Vesci Akad. Navuk BSSR Ser. Fiz.-Téhn. Navuk 3, 26–30 (1971)
Liskovets, V.A.: Exact enumeration of acyclic deterministic automata. Discrete Applied Mathematics 154(3), 537–551 (2006)
Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010)
Read, R.C.: A note on the number of functional digraphs. Mathematische Annalen 143, 109–110 (1961)
Robinson, R.W.: Counting strongly connected finite automata. In: Graph Theory with Applications to Algorithms and Computer Science, pp. 671–685 (1985)
Sandberg, S.: Homing and synchronizing sequence. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)
Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset word of random automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 290–298. Springer, Heidelberg (2011)
Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples concerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)
Trahtman, A.N.: Modifying the upper bound on the length of minimal synchronizing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)
Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kisielewicz, A., Szykuła, M. (2013). Generating Small Automata and the Černý Conjecture. In: Konstantinidis, S. (eds) Implementation and Application of Automata. CIAA 2013. Lecture Notes in Computer Science, vol 7982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39274-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-39274-0_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39273-3
Online ISBN: 978-3-642-39274-0
eBook Packages: Computer ScienceComputer Science (R0)