Abstract
Blur is one of the most common sources of image quality degradations, and it appears very often in practical photography. Most often blur is a result of misfocused optics, changes in the camera pose, and movements in the scene. Beyond the impaired visual quality, blurring may cause severe complications to computer vision algorithms, particularly in texture analysis. These problems have been tackled using deblurring approaches, which ultimately leads to much harder intermediate problem versus the original task of texture characterization. In this chapter, we present a simple yet powerful texture descriptor that is, by design, tolerant to most common types of image blurs. The proposed approach is based on quantizing the phase information of the local Fourier transform, which leads to computationally efficient and compact feature representation. We show how to construct several variants of our descriptor including rotation invariance and dynamic texture representation. Moreover, we present texture classification experiments, which illustrate the behavior under several different blur configurations. Surprisingly, the descriptor also achieves state-of-the-art performance with sharp textures, although the main design criteria was tolerance to blur.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Matlab procedure for generating blurred test images is available at http://www.cse.oulu.fi/CMV/Downloads/LPQMatlab.
- 3.
- 4.
- 5.
- 6.
- 7.
References
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Proceedings of Analysis and Modeling of Faces and Gestures (2007)
Varma, M., Zisserman, A.: Classifying images of materials: achieving viewpoint and illumination independence. In: Proceedings of European Conference on Computer Vision, vol. 3, pp. 255–271 (2002)
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)
Flusser, J., Suk, T.: Degraded image analysis: an invariant approach. IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 590–603 (1998)
Zhang, H., Shu, H., Han, G., Coatrieux, G., Luo, L., Coatrieux, J.: Blurred image recognition by Legendre moment invariants. IEEE Trans. Image Process. 19(3), 596–611 (2010)
Ojansivu, V., Heikkilä, J.: A method for blur and similarity transform invariant object recognition. In: Proceedings of International Conference on Image Analysis and Processing, pp. 583–588 (2007)
van de Weijer, J., Schmid, C.: Blur robust and color constant image description. In: Proceedings of IEEE International Conference on Image Processing, pp. 993–996 (2006)
Granlund, G., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic, Boston (1995)
Zhang, L., Zhang, L., Guo, Z., Zhang, D.: Monogenic-LBP: a new approach for rotation invariant texture classification. In: Proceedings of International Conference on Image Processing, pp. 2677–2680 (2010)
Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans. Image Process. 16(1), 57–68 (2007)
Fischer, S., Bigun, J.: Texture boundary tracking with gabor phase. In: Borgefors, G. (ed.)Theory and Applications of Image Analysis II, pp. 101–112. World Scientific, Singapore (1995)
Zhou, F., Feng, J., Shi, Q.: Texture feature based on local Fourier transform. In: Proceedings of International Conference on Image Processing, pp. 610–613 (2001)
Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)
Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Proceedings of International Conference on Image and Signal Processing, pp. 236–243 (2008)
Heikkilä, J., Ojansivu, V.: Methods for local phase quantization in blur-insensitive image analysis. In: Proceedings of International Workshop on Local and Non-Local Approximation in Image Processing, pp. 104–111 (2009)
Ojansivu, V., Rahtu, E., Heikkilä, J.: Rotation invariant blur insensitive texture analysis using local phase quantization. In: Proceedings of 19th International Conference on Pattern Recognition, 4 p (2008)
Rahtu, E., Heikkilä, J., Ojansivu, V., Ahonen, T.: Local phase quantization for blur-insensitive image analysis. Image Vis. Comput. 30(8), 501–512 (2012)
Päivärinta, V.J., Rahtu, E., Heikkilä, J.: Volume local phase quantization for blur-insensitive dynamic texture classification. In: Proceedings of Scandinavian Conference on Image, Analysis, pp. 360–369 (2011)
Hadid, A., Nishiyama, M., Sato, Y.: Recognition of blurred faces via facial deblurring combined with blur-tolerant descriptors. In: Proceedings of International Conference on Pattern Recognition, pp. 1160–1163 (2010)
Nishiyama, M., Hadid, A., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference using subspace analysis for recognition of blurred faces. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 838–845 (2011)
Chan, C.H., Tahir, M., Kittler, J., Pietikäinen, M.: Multiscale local phase quantisation for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1164–1177 (2013)
Jiang, B., Valstar, M.F., Pantic, M.: Action unit detection using sparse appearance descriptors in space-time video volumes. In: Proceedings of IEEE Conference on Automatic Face and Gesture Recognition, pp. 314–321 (2011)
Brahnam, S., Nanni, L., Shi, J.Y., Lumini, A.: Local phase quantization texture descriptor for protein classification. In: Proceedings of International Conference on Bioinformatics and Computational Biology (2010)
Banham, M., Katsaggelos, A.: Digital image restoration. IEEE Signal Process. Mag. 14(2), 24–41 (1997)
Wang, Z., Simoncelli, E.P., Local phase coherence and the perception of blur. In: Proceedings of Advances in Neural Information Processing Systems, pp. 786–792 (2003)
Boukerroui, D., Noble, J., Brady, M.: On the choice of band-pass quadrature filters. J. Math. Imaging Vis. 21, 53–80 (2004)
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)
Manjunathi, B., Ma, W.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1), 61–81 (2005)
Crosier, M., Griffin, L.D.: Using basic image features for texture classification. Int. J. Comput. Vis. 88(3), 447–460 (2010)
Levin, A., Weiss, Y., Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971 (2009)
Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram Fourier features. In: Proceedings of Scandinavian Conference on Image, Analysis, pp. 61–70 (2009)
Ghanem, B., Ahuja, N.: Maximum margin distance learning for dynamic texture recognition. In: Proceedings of European Conference on Computer Vision, pp. 223–236 (2010)
Péteri, R., Fazekas, S., Huiskes, M.J.: DynTex: a comprehensive database of dynamic textures. Pattern Recogn. Lett. 31(12), 1627–1632 (2010). http://www.cwi.nl/projects/dyntex/
Acknowledgments
This work was partially supported by Academy of Finland (Grant no. 127702). Authors would like to thank Mr. Veli Juhani Päivärinta for providing his material to this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Heikkilä, J., Rahtu, E., Ojansivu, V. (2014). Local Phase Quantization for Blur Insensitive Texture Description. In: Brahnam, S., Jain, L., Nanni, L., Lumini, A. (eds) Local Binary Patterns: New Variants and Applications. Studies in Computational Intelligence, vol 506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39289-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-39289-4_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39288-7
Online ISBN: 978-3-642-39289-4
eBook Packages: EngineeringEngineering (R0)