Skip to main content

Heterogeneous Ensemble of Classifiers for Sub-Cellular Image Classification Based on Local Ternary Patterns

  • Chapter
  • First Online:
Local Binary Patterns: New Variants and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 506))

  • 1411 Accesses

Abstract

In this chapter we make an extensive study of different state-of-the-art classifiers for building an heterogeneous ensemble for sub-cellular image classification. As features for representing each image we used local ternary patterns. Our aim is to show that it is possible to boost the performance of a stand-alone texture descriptor (here we use the high performance method named local ternary patterns) by an heterogeneous ensemble. First, we compare different classification approaches (different kind of boosting; SVM with various kernels; diverse recent ensemble of decision trees...) in five datasets; then, we show that an heterogeneous ensemble, based on the fusion of different classifiers, performs consistently well across all the tested datasets. The most important result is showing that some very recent approaches and our proposed ensemble outperform also SVM classifier (the well known and widely used LibSVM implementation), even when both kernel selection and the various SVM parameters are carefully tuned. Finally we validated our ensemble also using several datasets from the UCI Repository and other standard pattern classification problems. The Matlab code of the classifiers used in the proposed ensemble is available at bias.csr.unibo.it/nanni/HET.rar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Matlab implementation is available in the tool of this paper.

  2. 2.

    Download from http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html

  3. 3.

    Download from http://locate.imb.uq.edu.au/

  4. 4.

    Download from http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html#cho

  5. 5.

    Datasets and descriptions available at http://archive.ics.uci.edu/ml/ (link accessed 21 July 2011).

References

  1. Kuncheva, L.I.,Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

    Google Scholar 

  2. Kittler, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Google Scholar 

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Bologna, G., Appel, R.d.: A comparison study on protein fold recognition. In: The 9th International Conference on Neural Information Processing, pp. 2492–2496. Singapore (2002)

    Google Scholar 

  5. Martínez-Muñoz, G., Suárez, A.: Switching class labels to generate classification ensembles. Pattern Recog. 38(10), 1483–1494 (2005)

    Article  Google Scholar 

  6. Melville, P., Mooney, R.J.: Creating diversity in ensembles using artificial data. Inf. Fusion 6, 99–111 (2004)

    Article  Google Scholar 

  7. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  8. Tumer, K., Oza, N.C.: Input decimated ensembles. Pattern Anal. Appl. 6(1), 65–77 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nanni, L., Lumini, A.: Ensemble generation and feature selection for the identification of students with learning disabilities. Expert Syst. Appl. 36(2), 3896–900 (2009)

    Article  Google Scholar 

  10. Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  11. Kotsiansis, S., Tampakas, V.: Combining heterogeneous classifiers: a recent overview. J. Converg. Inf. Technol. 6(10), 164–172 (2011)

    Article  Google Scholar 

  12. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  13. Freund, Y.: RE S. A decision-theoretic generalization of on-line learning and an applications to boosting. J. Comput. Syst. Sci. 55(1), 119–39 (1997)

    Google Scholar 

  14. Rasmussen, C.E., Williams, C.: Gaussian processes for machine learning, The MIT Press, Boston (2006)

    Google Scholar 

  15. Cevikalp, H., Triggs, B., Yavuz, H.S., Küçük, Y., Küçük, M., Barkana, A.: Large margin classifiers based on affine hulls. Neurocomput. 73(16–18), 3160–3168 (2010)

    Article  Google Scholar 

  16. Nanni, L., Brahnam, S., Lumini, A.: Matrix representation in pattern classification. Expert Syst. Appl. 39(3), 3031–3036 (2012)

    Article  Google Scholar 

  17. Aydogan, D.B., Hannula, M., Arola, T., Dastidar, P., Hyttinen, J.: 2D texture based classification, segmentation and 3D orientation estimation of tissues using DT-CWT feature extraction methods. Data Knowl. Eng. 68(12), 1383–1397 (2009)

    Google Scholar 

  18. Tuceryan, M.: Texture analysis. In: Chen C.H., Pau L.F., Wang P.S.P. (eds.) The Handbook of Pattern Recognition and Computer Vision, pp. 207–248. World Scientific Publishing Co, Singapore (1998)

    Google Scholar 

  19. Tamura, H., Mori, S.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 75(6), 460–73 (1978)

    Google Scholar 

  20. Haralick, R.: Statistical and structural approaches to texture. P IEEE 67(5), 786–804 (1979)

    Google Scholar 

  21. Sklansky, J.: Image segmentation and feature extraction. IEEE Trans. Syst. Man Cybern. 75(4), 237–247 (1978)

    Article  Google Scholar 

  22. Hall-Beyer, M.: The GLCM Tutorial [Internet]. Version 2.10. 2007; Available from: www.fp.ucalgary.ca/mhallbey/tutorial.htm

    Google Scholar 

  23. Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  24. Nanni, L., Lumini, A.: Local binary patterns for a hybrid fingerprint matcher. Pattern Recogn. 41(11), 3461–3466 (2008)

    Article  MATH  Google Scholar 

  25. Vécsei, A., Amann, G., Hegenbart, S., Liedlgruber, M., Uhl, A.: Automated Marsh-like classification of celiac disease in children using local texture operators. Comput. Biol. Med. 41(6), 313–325 (2011)

    Article  Google Scholar 

  26. Oliver, A., Lladó, X., Freixenet, J., Martí, J.: False positive reduction in mammographic mass detection using local binary patterns. MICCAI Int. Conf. Med. Image Comput. Compu.Assist. Intervention 10(Pt 1), 286–93 (2007)

    Google Scholar 

  27. Nanni, L., Lumini, A.: A reliable method for cell phenotype image classification. Artif. Intell. Med. 43(2), 87–97 (2008)

    Article  Google Scholar 

  28. Paci, M., Nanni, L., Lahti, A., Aalto-Setälä, K., Hyttinen, J., Severi S.: Non-binary coding for texture descriptors in sub-cellular and stem cell image classification, Curr. Bioinform., Oak Park (2012)

    Google Scholar 

  29. Haralick R, Dinstein, Shanmugam K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621 (1973)

    Google Scholar 

  30. Toennies, KD.: Guide to medical image analysis: methods and algorithms. Springer, New York (2012)

    Google Scholar 

  31. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. 24(7), 971–987 (2002)

    Article  Google Scholar 

  32. Fu, X., Wei, W.: Centralized binary patterns embedded with image euclidean distance for facial expression recognition. In: Proceedings of the 2008 Fourth International Conference on Natural Computation, Vol. 04, pp. 115–119. IEEE Computer Society, Washington (2008)

    Google Scholar 

  33. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. Trans. Img. Proc. 19(2), 533–544 (2010)

    Article  MathSciNet  Google Scholar 

  34. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  35. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  36. Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinform. 17(12), 1213–1223 (2001)

    Google Scholar 

  37. Fink, J.L., Aturaliya, R.N., Davis, M.J., Zhang. F., Hanson, K., Teasdale, M.S., et al.: Locate: a mouse protein subcellular localization database. Nucleic Acids Res. 34(D) 213–217 (2006)

    Google Scholar 

  38. Boland, M.V., Markey, M.K., Murphy, R.F.: Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33(3), 366–375 (1998)

    Article  Google Scholar 

  39. Bache, K., Lichman, M.: UCI machine learning repository, University of California, Irvin (2010)

    Google Scholar 

  40. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: “Pap-smear benchmark data for pattern classification”, in nature inspired Smart information systems. Albufeira, Portugal (2005)

    Google Scholar 

  41. Ojansivu, V., Heikkilä, J.: “Blur insensitive texture classification using local phase quantization”, in Lect Notes Comput SC, pp. 236–243 Springer, Berlin (2008)

    Google Scholar 

  42. Fang, Y., Guo, Y., Feng, Y., Li, M.: Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features. Amino Acids 34(1), 103–109 (2008)

    Article  Google Scholar 

  43. Rohde, D.J., Drinkwater, M.J., Gallagher, M.R., Pimbblet, K.A.: Matching of catalogues by probabilistic pattern classification. Mon. Not. R. Astron. Soc. 369(1), 2–14 (2006)

    Article  Google Scholar 

  44. Zhang, C.-X., Zhang, J.-S.: RotBoost: a technique for combining rotation Forest and adaBoost. Pattern Recogn. Lett. 29(10), 1524–1536 (2008)

    Article  Google Scholar 

  45. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Segata, N., Blanzieri, E.: Fast and scalable local kernel machines. J. Mach. Learn. Res. 11, 1883–1926 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Kittler, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  48. Wolpert, D.H., Macready, W.G.: Coevolutionary free lunches. IEEE Trans. Evol. Comput. 9(6), 721–735 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loris Nanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nanni, L., Paci, M., Severi, S. (2014). Heterogeneous Ensemble of Classifiers for Sub-Cellular Image Classification Based on Local Ternary Patterns. In: Brahnam, S., Jain, L., Nanni, L., Lumini, A. (eds) Local Binary Patterns: New Variants and Applications. Studies in Computational Intelligence, vol 506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39289-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39289-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39288-7

  • Online ISBN: 978-3-642-39289-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics