Abstract
Ocean models that are able to provide accurate and real-time prediction of ocean currents will improve the performance of glider navigation. In this paper, we propose a novel approach to compute a model for ocean currents at higher resolution than existing approaches. By focusing on a small area and incorporating measurements from multiple gliders, we are able to perform real-time computation of the model, which can be used to improve performance of underwater glider navigation in the ocean. Our model uses a lower resolution, larger scale dataset generated from existing models to initialize the computation. We have also demonstrated incorporating data streams from high frequency (HF) radar measurements of surface currents. Glider navigation performance using the proposed ocean currents model is demonstrated in a simulated flow field based on data collected off the coast of Georgia, USA.
The research work is supported by ONR grants N00014-08-1-1007, N00014-09-1- 1074, and N00014-10-10712 (YIP), and NSF grants ECCS-0841195 (CAREER), CNS-0931576, ECCS-1056253, and OCE-1032285.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shchepetkin, A.F., McWilliams, J.C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9(4), 347–404 (2005)
Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L.: Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys. 227(7), 3595–3624 (2008)
Chassignet, E.P., Hurlburt, H.E., Smedstad, O.M., Halliwell, G.R., Hogan, P.J., Wallcraft, A.J., Baraille, R., Bleck, R.: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65(1–4), 60–83 (2007)
Smith, R.N., Chao, Y., Li, P.P., Caron, D.A., Jones, B.H., Sukhatme, G.S.: Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int. J. Robot. Res. 29(12), 1475–1497 (2010)
Szwaykowska, K., Zhang, F.: A lower bound on navigation error for marine robots guided by ocean circulation models. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp. 3583–3588. San Francisco (2011)
Moon, C.B., Chung, W.: Design of navigation behaviors and the selection framework with generalized stochastic petri nets toward dependable navigation of a mobile robot. In: Proceedings of 2010 IEEE Conference on Robotics and Automation (May 2010), pp. 2989–2994. Anchorage (2010)
Lynch, K., Schwartz, I., Yang, P., Freeman, R.: Decentralized environmental modeling by mobile sensor networks. IEEE Trans. Rob. 24(3), 710–724 (2008)
Zhang, F., Fratantoni, D.M., Paley, D., Lund, J., Leonard, N.E.: Control of coordinated patterns for ocean sampling. Int. J. Control. 80(7), 1186–1199 (2007)
Leonard, N.E., Paley, D.A., Davis, R.E., Fratantoni, D.M., Lekien, F., Zhang, F.: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot. 27(6), 718–740 (2010)
Bingham, B.: Predicting the navigation performance of underwater vehicles. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 261–266. St. Louis (2009)
Smith, R.N., Schwager, M., Smith, S.L., Jones, B.H., Rus, D., Sukhatme, G.S.: Persistent ocean monitoring with underwater gliders: adapting sampling resolution. J. Field Robot. 28(5), 714–741 (2011)
Hover, F.: Path planning for data assimilation in mobile environmental monitoring systems. In: Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 213–218. St. Louis (2009) Oct 2009
Paduan, J.D., Shulman, I.: HF radar data assimilation in the Monterey Bay area. J. Geophys. Res. 109, C07S09 (2004)
Zhang, F., Leonard, N.E.: Cooperative control and filtering for cooperative exploration. IEEE Trans. Autom. Control. 55(3), 650–663 (2010)
Liang, X., Wu, W., Chang, D., Zhang, F.: Real-time modelling of tidal current for navigating underwater glider sensing networks. Procedia Comput. Sci. 10, 1121–1126 (2012)
Kumar, S.: Neural Networks: A Classroom Approach. Tata McGraw-Hill, Education, India (2004)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1996)
Pawlowicz, R., Beardsley, B., Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput. Geosci. 28(8), 929–937 (2002)
Anjyo, K., Lewis, J.P.: RBF interpolation and Gaussian process regression through an RKHS formulation. J. Math. Ind. 3(2011A–6), 63–71 (2011)
Figueiredo, M.A.T.: On Gaussian radial basis function approximations: Interpretation, extensions, and learning strategies. In: Proceedings of 15th International Conference on Pattern Recognition, Vol. 2, pp. 618–621. Barcelona (2000)
Hartigan, J.A., Wong, M.A.: Algorithm as 136: a K-means clustering algorithm. J. Roy. Stat. Soc. 28(1), 100–108 (1979)
Simon, D.: Optimal state estimation: Kalman, H\(\infty \) and nonlinear approaches. Wiley, Chichester (2006)
Gurgel, K.W., Antonischki, G., Essen, H.H., Schlick, T.: Wellen Radar (WERA): a new ground-wave HF radar for ocean remote sensing. Coast. Eng. 37(3–4), 219–234 (1999)
Savidge, D., Amft, J., Gargett, A., Archer, M., Conley, D., Voulgaris, G., Wyatt, L., Gurgel, K.W.: Assessment of WERA long-range HF-radar performance from the user’s perspective. In: Proceedings of the IEEE/OES/CWTM 10th Working Conference on Current Measurement, Technology, pp. 31–38 (2011)
Luettich, R.A., Westerink, J.J., Scheffner, N.W.: ADCIRC: an advanced three-dimensional circulation model for shelves coasts and estuaries, report 1: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical report, U.S. Army Engineers Waterways Experiment Station, Vicksburg (1992)
Blanton, B.O., Werner, F.E., Seim, H.E., Luettich, Jr., R.A., Lynch, D.R., Smith, K.W., Voulgaris, G., Bingham, F.M., Way, F.: Barotropic tides in the South Atlantic Bight. J. Geophys. Res. 109, C12024 (2004)
Szwaykowska, K., Zhang, F.: A lower bound for controlled Lagrangian particle tracking error. In: Proceedings of 49th IEEE Conference on Decision and Control, pp. 4353–4358. Atlanta (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chang, D., Liang, X., Wu, W., Edwards, C.R., Zhang, F. (2014). Real-Time Modeling of Ocean Currents for Navigating Underwater Glider Sensing Networks. In: Koubâa, A., Khelil, A. (eds) Cooperative Robots and Sensor Networks. Studies in Computational Intelligence, vol 507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39301-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-39301-3_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39300-6
Online ISBN: 978-3-642-39301-3
eBook Packages: EngineeringEngineering (R0)