Skip to main content

Real-Time Modeling of Ocean Currents for Navigating Underwater Glider Sensing Networks

  • Chapter
  • First Online:
Cooperative Robots and Sensor Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 507))

  • 1714 Accesses

Abstract

Ocean models that are able to provide accurate and real-time prediction of ocean currents will improve the performance of glider navigation. In this paper, we propose a novel approach to compute a model for ocean currents at higher resolution than existing approaches. By focusing on a small area and incorporating measurements from multiple gliders, we are able to perform real-time computation of the model, which can be used to improve performance of underwater glider navigation in the ocean. Our model uses a lower resolution, larger scale dataset generated from existing models to initialize the computation. We have also demonstrated incorporating data streams from high frequency (HF) radar measurements of surface currents. Glider navigation performance using the proposed ocean currents model is demonstrated in a simulated flow field based on data collected off the coast of Georgia, USA.

The research work is supported by ONR grants N00014-08-1-1007, N00014-09-1- 1074, and N00014-10-10712 (YIP), and NSF grants ECCS-0841195 (CAREER), CNS-0931576, ECCS-1056253, and OCE-1032285.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shchepetkin, A.F., McWilliams, J.C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9(4), 347–404 (2005)

    Article  Google Scholar 

  2. Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L.: Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys. 227(7), 3595–3624 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chassignet, E.P., Hurlburt, H.E., Smedstad, O.M., Halliwell, G.R., Hogan, P.J., Wallcraft, A.J., Baraille, R., Bleck, R.: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65(1–4), 60–83 (2007)

    Article  Google Scholar 

  4. Smith, R.N., Chao, Y., Li, P.P., Caron, D.A., Jones, B.H., Sukhatme, G.S.: Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int. J. Robot. Res. 29(12), 1475–1497 (2010)

    Article  Google Scholar 

  5. Szwaykowska, K., Zhang, F.: A lower bound on navigation error for marine robots guided by ocean circulation models. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp. 3583–3588. San Francisco (2011)

    Google Scholar 

  6. Moon, C.B., Chung, W.: Design of navigation behaviors and the selection framework with generalized stochastic petri nets toward dependable navigation of a mobile robot. In: Proceedings of 2010 IEEE Conference on Robotics and Automation (May 2010), pp. 2989–2994. Anchorage (2010)

    Google Scholar 

  7. Lynch, K., Schwartz, I., Yang, P., Freeman, R.: Decentralized environmental modeling by mobile sensor networks. IEEE Trans. Rob. 24(3), 710–724 (2008)

    Article  Google Scholar 

  8. Zhang, F., Fratantoni, D.M., Paley, D., Lund, J., Leonard, N.E.: Control of coordinated patterns for ocean sampling. Int. J. Control. 80(7), 1186–1199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leonard, N.E., Paley, D.A., Davis, R.E., Fratantoni, D.M., Lekien, F., Zhang, F.: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot. 27(6), 718–740 (2010)

    Article  Google Scholar 

  10. Bingham, B.: Predicting the navigation performance of underwater vehicles. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 261–266. St. Louis (2009)

    Google Scholar 

  11. Smith, R.N., Schwager, M., Smith, S.L., Jones, B.H., Rus, D., Sukhatme, G.S.: Persistent ocean monitoring with underwater gliders: adapting sampling resolution. J. Field Robot. 28(5), 714–741 (2011)

    Article  Google Scholar 

  12. Hover, F.: Path planning for data assimilation in mobile environmental monitoring systems. In: Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 213–218. St. Louis (2009) Oct 2009

    Google Scholar 

  13. Paduan, J.D., Shulman, I.: HF radar data assimilation in the Monterey Bay area. J. Geophys. Res. 109, C07S09 (2004)

    Google Scholar 

  14. Zhang, F., Leonard, N.E.: Cooperative control and filtering for cooperative exploration. IEEE Trans. Autom. Control. 55(3), 650–663 (2010)

    Article  MathSciNet  Google Scholar 

  15. Liang, X., Wu, W., Chang, D., Zhang, F.: Real-time modelling of tidal current for navigating underwater glider sensing networks. Procedia Comput. Sci. 10, 1121–1126 (2012)

    Article  Google Scholar 

  16. Kumar, S.: Neural Networks: A Classroom Approach. Tata McGraw-Hill, Education, India (2004)

    Google Scholar 

  17. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1996)

    Google Scholar 

  18. Pawlowicz, R., Beardsley, B., Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput. Geosci. 28(8), 929–937 (2002)

    Article  Google Scholar 

  19. Anjyo, K., Lewis, J.P.: RBF interpolation and Gaussian process regression through an RKHS formulation. J. Math. Ind. 3(2011A–6), 63–71 (2011)

    Google Scholar 

  20. Figueiredo, M.A.T.: On Gaussian radial basis function approximations: Interpretation, extensions, and learning strategies. In: Proceedings of 15th International Conference on Pattern Recognition, Vol. 2, pp. 618–621. Barcelona (2000)

    Google Scholar 

  21. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a K-means clustering algorithm. J. Roy. Stat. Soc. 28(1), 100–108 (1979)

    MATH  Google Scholar 

  22. Simon, D.: Optimal state estimation: Kalman, H\(\infty \) and nonlinear approaches. Wiley, Chichester (2006)

    Google Scholar 

  23. Gurgel, K.W., Antonischki, G., Essen, H.H., Schlick, T.: Wellen Radar (WERA): a new ground-wave HF radar for ocean remote sensing. Coast. Eng. 37(3–4), 219–234 (1999)

    Article  Google Scholar 

  24. Savidge, D., Amft, J., Gargett, A., Archer, M., Conley, D., Voulgaris, G., Wyatt, L., Gurgel, K.W.: Assessment of WERA long-range HF-radar performance from the user’s perspective. In: Proceedings of the IEEE/OES/CWTM 10th Working Conference on Current Measurement, Technology, pp. 31–38 (2011)

    Google Scholar 

  25. Luettich, R.A., Westerink, J.J., Scheffner, N.W.: ADCIRC: an advanced three-dimensional circulation model for shelves coasts and estuaries, report 1: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical report, U.S. Army Engineers Waterways Experiment Station, Vicksburg (1992)

    Google Scholar 

  26. Blanton, B.O., Werner, F.E., Seim, H.E., Luettich, Jr., R.A., Lynch, D.R., Smith, K.W., Voulgaris, G., Bingham, F.M., Way, F.: Barotropic tides in the South Atlantic Bight. J. Geophys. Res. 109, C12024 (2004)

    Google Scholar 

  27. Szwaykowska, K., Zhang, F.: A lower bound for controlled Lagrangian particle tracking error. In: Proceedings of 49th IEEE Conference on Decision and Control, pp. 4353–4358. Atlanta (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsik Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chang, D., Liang, X., Wu, W., Edwards, C.R., Zhang, F. (2014). Real-Time Modeling of Ocean Currents for Navigating Underwater Glider Sensing Networks. In: Koubâa, A., Khelil, A. (eds) Cooperative Robots and Sensor Networks. Studies in Computational Intelligence, vol 507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39301-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39301-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39300-6

  • Online ISBN: 978-3-642-39301-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics