Skip to main content

Blum Static Complexity and Encoding Spaces

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8031))

Included in the following conference series:

  • 463 Accesses

Abstract

The notion of descriptional complexity or algorithmic information, also known as Chaitin-Kolmogorov complexity, was defined in the ’60s in terms of minimal description length [14, 17]. This concept was extended in 2012 in two papers, each using a different approach. One of the papers studies properties of the complexity function, and uses the notion of encoded function space; the other one extends Blum axioms for static complexity, and defines Blum static complexity spaces. In formal language theory we also use the concept of descriptional complexity for the number of states, or the number of transitions in a minimal finite automaton accepting a regular language, and apparently, this number has no connection to Chaitin-Kolmogorov complexity. In this paper we establish such a connection by extending the notions of Blum static complexity and of encoded function space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, M.: A machine-independent theory of the complexity of recursive functions. Journal of the ACM 14(2), 322–336 (1967)

    Article  MATH  Google Scholar 

  2. Blum, M.: On the size of machines. Information and Control 11, 257–265 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boucher, C.: Leçons sur la théorie des automates mathématiques. Lecture Notes in Operations Research and Mathematical Systems, vol. 46. Springer, Berlin (1971)

    MATH  Google Scholar 

  4. Burgin, M.: Generalized Kolmogorov complexity and other dual complexity measures. Translated from Kibernetica 4, 21–29 (1990) (Original article submitted June 19, 1986)

    Google Scholar 

  5. Burgin, M.: Algorithmic complexity of recursive and inductive algorithms. Theoretical Computer Science 317, 31–60 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burgin, M.: Algorithmic complexity as a criterion of unsolvability. Theoretical Computer Science 383, 244–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calude, C.: Information and Randomness - An Algorithmic Perspective. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  8. Calude, C.: Theories of Computational Complexity. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  9. Calude, C.: Theory of Algorithms, University of Bucharest, Bucharest (1987) (in Romanian)

    Google Scholar 

  10. Calude, C., Salomaa, K., Roblot, T.K.: Finite State Complexity and Randomness. Technical Report CDMTCS 374 (December 2009/revised June 2010)

    Google Scholar 

  11. Câmpeanu, C.: A Note on Blum Static Complexity Measures. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS, vol. 7160, pp. 71–80. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Câmpeanu, C.: Randomness in Blum Universal Static Complexity Spaces. Accepted to Journal of Automata Languages and Combinatorics (2012)

    Google Scholar 

  13. Câmpeanu, C., Ho, W.H.: The maximum state complexity for finite languages. Journal of Automata, Languages and Combinatorics 9(2-3), 189–202 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Chaitin, G.J.: A Theory of Program Size Formally Identical to Information Theory. Journal ACM 22(3), 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chaitin, G.J.: Algorithmic Information Theory. Cambridge Tracts in Theoretical Computer Science, vol. I. Cambridge University Press (1987)

    Google Scholar 

  16. Jürgensen, H.: Invariance and universality of complexity. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS, vol. 7160, pp. 140–158. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Kolmogorov, A.N.: Problems Inform. Transmission 1, 1–7 (1965)

    Google Scholar 

  18. Konstantinidis, S.: Private Communication to Cezar Câmpeanu at DCFS 2008 (2008)

    Google Scholar 

  19. Loveland, D.A.: On Minimal-Program Complexity Measures. In: STOC, pp. 61–65 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Câmpeanu, C. (2013). Blum Static Complexity and Encoding Spaces. In: Jurgensen, H., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2013. Lecture Notes in Computer Science, vol 8031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39310-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39310-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39309-9

  • Online ISBN: 978-3-642-39310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics