Abstract
The syntactic complexity of a subclass of the class of regular languages is the maximal cardinality of syntactic semigroups of languages in that class, taken as a function of the state complexity n of these languages. We prove that n! and \(\lfloor e(n-1)! \rfloor\) are tight upper bounds for the syntactic complexity of \({\mathcal R}\)- and \({\mathcal J}\)-trivial regular languages, respectively.
This work was supported by the Natural Sciences and Engineering Research Council of Canada under grant No. OGP0000871 and a Postgraduate Scholarship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brzozowski, J., Fich, F.E.: Languages of \({\mathcal R}\/\)-trivial monoids. J. Comput. System Sci. 20(1), 32–49 (1980)
Brzozowski, J., Li, B.: Syntactic complexities of some classes of star-free languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 117–129. Springer, Heidelberg (2012)
Brzozowski, J., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. Theoret. Comput. Sci. 449, 37–53 (2012)
Brzozowski, J., Liu, D.: Syntactic complexity of finite/cofinite, definite, and reverse definite languages (June 2012), http://arxiv.org/abs/1203.2873
Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer, Heidelberg (2011)
Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups: An Introduction. Springer (2009)
Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size. Theoret. Comput. Sci. 327(3), 319–347 (2004)
Jirásková, G., Masopust, T.: On the state and computational complexity of the reverse of acyclic minimal DFAs. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 229–239. Springer, Heidelberg (2012)
KlÃma, O., Polák, L.: On biautomata. In: Freund, R., Holzer, M., Mereghetti, C., Otto, F., Palano, B. (eds.) Proceedings of the Third Workshop on Non-Classical Models for Automata and Applications - NCMA 2011, Milan, Italy, July 18-19, vol. 282, pp. 153–164. Austrian Computer Society (2011)
Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transformations of a finite set (2003), http://arxiv.org/abs/math/0306416v1
Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970) (Russian); English translation: Soviet Math. Dokl. 11, 1373–1375 (1970)
Myhill, J.: Finite automata and the representation of events. Wright Air Development Center Technical Report 57–624 (1957)
Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 679–746. Springer (1997)
Saito, T.: \({\mathcal J}\/\)-trivial subsemigroups of finite full transformation semigroups. Semigroup Forum 57, 60–68 (1998)
Simon, I.: Hierarchies of Events With Dot-Depth One. PhD thesis, Dept. of Applied Analysis & Computer Science, University of Waterloo, Waterloo, Ont., Canada (1972)
Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)
Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 41–110. Springer (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brzozowski, J., Li, B. (2013). Syntactic Complexity of \({\mathcal R}\)- and \({\mathcal J}\)-Trivial Regular Languages. In: Jurgensen, H., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2013. Lecture Notes in Computer Science, vol 8031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39310-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-39310-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39309-9
Online ISBN: 978-3-642-39310-5
eBook Packages: Computer ScienceComputer Science (R0)