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Abstract. We study the state complexity of boolean operations and
product (concatenation, catenation) combined with star. We derive tight
upper bounds for the symmetric differences and differences of two lan-
guages, one or both of which are starred, and for the product of two
starred languages. We prove that the previously discovered bounds for
the union and the intersection of languages with one or two starred argu-
ments, for the product of two languages one of which is starred, and for
the star of the product of two languages can all be met by the recently
introduced universal witnesses and their variants.
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1 Introduction

The state complexity of a regular language is the number of states in the min-
imal deterministic finite automaton (DFA) recognizing the language. The state

complexity of an operation on regular languages is the worst-case state complex-
ity of the result of the operation as a function of the state complexities of the
arguments. For more information on this topic see [1,2,11].

Let K and L be two regular languages over alphabet Σ, and let their state
complexities be m and n, respectively. In 2007 A. Salomaa, K. Salomaa, and
Yu [10] showed using ternary witnesses that the complexity of (K ∪ L)∗ is
2m+n−1 − (2m−1 + 2n−1 − 1). They also established a lower bound for (K ∩L)∗

using an alphabet of 8 letters. These results were improved by Jirásková and
Okhotin [9] who showed that binary witnesses suffice for (K ∪ L)∗, and that
3 ·2mn−2 is a tight upper bound for (K ∩L)∗; they used an alphabet of 6 letters.
In 2012, Gao and Yu [8] showed with ternary witnesses that the complexity of
K ∪ L∗ is m(2n−1 + 2n−2 − 1) + 1, and that the same upper bound applies to
K ∩ L∗. Moreover, it was shown in [6] by Gao, Kari and Yu that quaternary
witnesses meet the bound (2m−1 + 2m−2 − 1)(2n−1 + 2n−2 − 1) + 1 for K∗ ∪L∗
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and K∗ ∩ L∗. In 2008, Gao, K. Salomaa, and Yu [7] demonstrated using qua-
ternary witnesses that 2m+n−1 + 2m+n−4 − (2m−1 + 2n−1 − m − 1) is a tight
upper bound for (KL)∗. The complexity of KL∗ was studied by Cui, Gao, Kari
and Yu [5] in 2012. They proved with ternary witnesses that the tight bound is
m(2n−1 + 2n−2) − 2n−2. The same authors also showed in [4] using quaternary
witnesses that the complexity of K∗L is 5 ·2m+n−3−2m−1−2n+1. In summary,
nine operations using union, intersection, and product (also called concatenation
or catenation) combined with star have been studied.

To establish the state complexity of an operation one finds an upper bound
and languages to act as witnesses to show that the bound is tight. A witness
is usually a sequence (Ln | n > k) of languages, where k is some small positive
integer; we will call such a sequence a stream of languages. The languages in a
stream normally differ only in the parameter n. In the past, two different streams
have been used for most binary operations.

Recently, Brzozowski [2] proposed the DFA Un(a, b, c) = (Q,Σ, δ, 0, {n−1}) of
Fig. 1 and its language Un(a, b, c) as the “universal witness” DFA and language,
respectively, for n > 3. The restrictions of the DFA and the language to alphabet
{a, b} are denoted by Un(a, b, ∅) and Un(a, b, ∅). It was proved in [2] that the
bound 2n−1 +2n−2 for star is met by Un(a, b, ∅), and the bound 2n for reversal,
by Un(a, b, c). The bound (m − 1)2n + 2n−1 for product is met by Um(a, b, c)
and Un(a, b, c). The bound mn for union, intersection, difference (K \ L) and
symmetric difference (K ⊕L) is met by the streams Um(a, b, c) and Un(a, b, c) if
m 6= n, as was conjectured in [2] and proved in [3]. If m = n, it is necessary to use
two different streams; however, it is possible to use streams that are almost the
same, in the following sense. Two languagesK and L over Σ are permutationally

equivalent if one can be obtained from the other by permuting the letters of the
alphabet, and a similar definition applies to DFA’s. It was proved in [2] that
two permutationally equivalent streams Um(a, b, c) and Un(b, a, c) are witnesses
to the bound for the boolean operations: union (K ∪ L), intersection (K ∩ L),
difference (K \L), and symmetric difference (K ⊕L). Thus Un(a, b, c) is indeed
a universal witness for the basic operations.

c

0 1 2
a a aa, b

n − 2· · ·
a

b

a, c

n − 1

b, c
b

b, cc

Fig. 1. DFA Un(a, b, c) of language Un(a, b, c).

It turns out that the witness Un(a, b, c) cannot meet the bound for some
combined operations. However, the notion of universal witness can be broadened
to include “dialects” of Un(a, b, c). Some terminology is required, before we define
this concept.
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The inputs of DFA Un perform the following transformations on the set
Q = {0, . . . , n−1} of states. Input a is a cycle of all n states, and this is denoted
by a : (0, . . . , n − 1). Input b is a transposition of 0 and 1, and does not affect
any other states; this is denoted by b : (0, 1), and by b : (i, j), if i and j are
transposed. Input c is a singular transformation sending state n− 1 to state 0,
and not affecting any other states; this is denoted by c :

(

n−1
0

)

, and by c :
(

i
j

)

,
in general. The constant transformation sending all states to state i is denoted
by

(

Q
i

)

. The identity transformation on Q is denoted by 1Q.
It is known [2] that the inputs of Un(a, b, c) of Fig. 1 perform all nn trans-

formations of states.
A dialect of Un(a, b, c) is the language of any DFA with three inputs a, b,

and c, where a is a cycle of length n as above, b is the transposition of any two
states (i, j), and c is a singular transformation c :

(

i
j

)

sending any state i to any

state j. The initial state is always 0, but the set of final states is arbitrary, as
long as the resulting DFA is minimal.

Since there are operations for which ternary witnesses do not meet the worst-
case bounds, the notions of universal witness and dialect have been extended to
quaternary alphabets [2], by adding a fourth input d which performs the identity
permutation, denoted by d : 1Q. The concepts of permutational equivalence and
dialects were extended in the obvious way to quaternary languages and DFA’s.
The following dialects are used in this paper:

1. U{0},n(a, b, c), which is Un(a, b, c) with {0} as the set of final states.
2. Tn(a, b, c) = (Q,Σ, δT , 0, {n − 1}), where a : (0, . . . , n − 1), b : (0, 1), and

c :
(

1
0

)

.
3. Wn(a, b, c, d) = (Q,Σ, δW , 0, {n−1}), where a : (0, . . . , n−1), b : (n−2, n−1),

c :
(

1
0

)

, and d : 1Q.
4. W{0},n(a, b, c, d), which is Wn(a, b, c, d) with {0} as the set of final states.

We use the convention that X is a DFA if and only if X is its language. The oper-
ation K ◦L represents any one of the four boolean operations union, intersection,
difference and symmetric difference.

In this paper, we consider the following 13 operations that use boolean op-
erations and product combined with star :

K ∪ L∗,K ∩ L∗,K ⊕ L∗,K\L∗, L∗\K,
K∗ ∪ L∗,K∗ ∩ L∗,K∗ ⊕ L∗,K∗\L∗,
KL∗,K∗L,K∗L∗, (KL)∗.

Our contributions are as follows:

1. We derive the bound m(2n−1 + 2n−2 − 1) + 1 for Km \ L∗
n, L

∗
n \ Km and

Km⊕L∗
n. We show that the known bounds forKm∪L∗

n,Km⊕L∗
n and L∗

n\Km

are met by the streams Um(a, b, c) and Un(b, a, c), and that, for Km ∪ L∗
n

and Km \ L∗
n, the dialect U{0},m(a, b, c) and the language Un(b, a, c) act as

witnesses. This corrects an error in [8], where it is claimed that the witnesses
that serve for union also work for intersection.

2. We derive the bound (2m−1+2m−2−1)(2n−1+2n−2−1)+1 for K∗
m\L∗

n, and
K∗

m⊕L∗
n. We show that the known bounds for K∗

m∪L∗
n and K∗

m∩L∗
n are met

3



by the dialects Wm(a, b, c, d) and Wn(d, c, b, a), and that, for K∗
m \ L∗

n and
K∗

m ⊕ L∗
n, the dialects W{0},m(a, b, c, d) and Wn(d, c, b, a) act as witnesses.

3. We prove that the known bound m(2n−1 + 2n−2) − 2n−2 for KmL∗
n is met

by the dialects Tm(a, b, c) and Tn(b, a, c).
4. We show that the known bound 5 · 2m+n−3 − 2m−1 − 2n + 1 for K∗

mLn is
met by Um(a, b, c, d) and Un(d, c, b, a).

5. We derive the bound 2m+n−1− 2m−1− 3 · 2n−2+2 for K∗
mL∗

n and show that
it is met by Um(a, b, c, d) and Un(d, c, b, a).

6. We prove that the known bound 2m+n−1+2m+n−4− (2m−1+2n−1−m− 1)
for (KmLn)

∗ is met by Wm(a, b, c, d) and Wn(d, c, b, a).
7. In obtaining these results, we prove Conjectures 7, 9, 10, 12, 15 and 17 of [2].

Sections 2 and 3 study boolean operations with one and two starred argu-
ments, respectively. Products with one or two starred arguments are examined in
Section 4. In Section 5 we consider stars of product, intersection, and difference,
and Section 6 concludes the paper.

2 Boolean Operations with One Starred Argument

Recall that the complexity of L∗
n is 2n−1 + 2n−2. Gao and Yu [8] showed that

the complexity of Km ∪ L∗
n is m(2n−1 + 2n−2 − 1) + 1. They used the following

DFA’s over alphabet Σ = {a, b, c}: For K, let DK = (QK , Σ, δK , 0, {m − 1}),
with QK = {0, . . . ,m − 1}, a, b : 1QK

, and c : (0, . . . n − 1). For L, let DL =
(QL, Σ, δL, 0, {n− 1}), with QL = {0, . . . , n− 1}, a : (0, . . . , n− 1), b defined by
δL(0, b) = 0, δL(i, b) = i + 1 (mod n), for i = 1, . . . , n − 1, and c : 1QL

. They
showed that the same bound also holds for Km∩L∗

n, and claimed that the same
witnesses work. That claim is incorrect, however, as is shown below.

The results of [8] for union are extended here to Km ∪ L∗
n, Km ⊕ L∗

n and
L∗
n \Km with witnesses Um(a, b, c) and Un(b, a, c), and to Km∩L∗

n and Km \L∗
n

with witnesses U{0},m(a, b, c) and Un(b, a, c).

Proposition 1. Let Km and Ln be two regular languages with complexities m
and n. Then the complexities of Km ◦ L∗

n and L∗
n \Km are at most m(2n−1 +

2n−2 − 1) + 1, for n > 3.

Proof. Let D1 = (Q1, Σ, δ1, 0, F1) with Q1 = {0, . . . ,m − 1} be the DFA of
Km, and let D2 = (Q2, Σ, δ2, 0, F2) with Q2 = {0, . . . , n − 1} be the DFA of
Ln. Construct N2, an NFA accepting L∗

n, by adding a new final state s to D2,
with the same outgoing transitions as state 0, and ε-transitions from each final
state in F2 to 0. Now N2 has initial state {s} instead of {0}. See Fig. 2 for
an illlustration. Let S2 be the minimal DFA obtained from N2 by the subset
construction and minimization, and let P be the direct product of D1 and S2.

For all five boolean operations, the states of P are ordered pairs, where the
first element is a state i ∈ Q1 and the second is either {s} or a subset of Q2.
Because of the ε-transitions, the allowable states are (0, {s}), all states of the
form (i, S) where S is non-empty and S∩F2 = ∅, and all states of the form (i, S)

4



NFA N2 of (U5(b, a, c))
∗

a

b

a, b a

bb, ccc

a, c

0 1 2 3 4

b

c

b b

a, ca, cc

a, b

a

a

s
c

a, b

ε, b, c

0 1 2 3

DFA D1 of U4(a, b, c)

Fig. 2. DFA D1 of U4(a, b, c) and NFA N2 of (U5(b, a, c))
∗.

where S contains at least one final state together with 0. The total number of
possible states is largest if there is only one final state, say n − 1. Hence the
number of states in P cannot exceed 1 plus m(2n−1 − 1) for states of the form
(i, S) where S is non-empty and n − 1 /∈ S, and m2n−2 for states of the form
(i, S) where 0, n − 1 ∈ S. Therefore the complexity of Km ◦ L∗

n and L∗
n \ Km

cannot exceed 1 +m(2n−1 + 2n−2 − 1). ⊓⊔

Theorem 1 (K ◦L∗). Let Km = Um(a, b, c) and Ln = Un(b, a, c). For m,n > 3,
the complexities of Km∪L∗

n, Km⊕L∗
n, and L∗

n\Km are all m(2n−1+2n−2−1)+1.
Let K ′

m be the language U{0},m(a, b, c). Then the complexities of K ′
m ∩ L∗

n and

K ′
m \ L∗

n are also m(2n−1 + 2n−2 − 1) + 1.

Proof. Let the various automata be defined as in the proof of Proposition 1,
but this time with Km = Um(a, b, c) and Ln = Un(b, a, c). We show that all
m(2n−1+2n−2− 1)+1 allowable states of P are reachable. We use the notation

(i, S)
w
−→ (j, T ) to denote that state (j, T ) is reached from (i, S) by word w.

We have (0, {s})
c
−→ (0, {0})

(ba)i−1

−−−−−→ (i, {0}) for 2 6 i 6 m − 1. If m is odd,

(0, {0})
am+1

−−−→ (1, {0}); if m is even, (0, {0})
am−1ca
−−−−−→ (1, {0}).

Brzozowski showed in [2] that all allowable states of N2 are reachable from
{0} by words in {a, b}∗. These words act as permutations on D1. To reach state
(i, S) apply the word w that takes {0} to S in N2 to state (j, {0}), where j is

such that j
w
−→ i. Therefore all the allowable states are reachable.

For distinguishability, first consider two states (i, S) and (j, T ), where S 6= T .
Then there is a k either in S\T or in T \S; without loss of generality, assume
k ∈ S\T . By applying bn−1−k, we reach states (i′, S′) and (j′, T ′), where n−1 ∈
S′\T ′. Note that applying some cyclic shift al to D1, we reach states (i′′, S′′) and
(j′′, T ′′), where n− 1 ∈ S′′\T ′′. These states are distinguishable for the boolean
operations as follows:

– Km ∪L∗
n,Km ⊕L∗

n, L
∗
n\Km: apply a cyclic shift so i′, j′ are non-final in D1.

This is possible since as D1 has a single final state and m > 3.
– K ′

m ∩ L∗
n: map i to the final state of D1.

– K ′
m\L∗

n: map j to the final state of D1.

Now consider two states (i, S) and (j, S), i < j. We may assume j < m− 1
because, since m > 3, we can apply a cyclic shift of a’s so that neither i nor j

5



is equal to m − 1. Doing so might change S to S′, but S′ is the same in both
states and S′ remains non-empty. The states are distinguishable as follows:

– Km ∪ L∗
n,Km ⊕ L∗

n,K
′
m\L∗

n: apply c so that n− 1 /∈ S, then ak for some k
to map j to a final state.

– K ′
m ∩ L∗

n, L
∗
n\Km: since S is non-empty, apply a cyclic shift so n − 1 ∈ S,

then another shift so j is final, and hence i is non-final.

Finally, note that only states (0, {s}) and (0, {0}) reach (1, {1}) on applying
a; therefore by the previous argument, (0, {s}) is distinguishable from all other
states except possibly (0, {0}). Note now that states (0, {s}) and (0, {0}) are
distinguishable in Km ∪L∗

n, Km ⊕L∗
n and L∗

n \Km, but equivalent in Km ∩L∗
n

and Km \ L∗
n. Hence we cannot have the same witnesses for both intersection

and union. However, the choice of final states distinguishes (0, {s}) from (0, {0})
for K ′

m ∩L∗
n and K ′

m\L∗
n. Therefore all reachable states are distinguishable. ⊓⊔

3 Boolean Operations with Two Starred Arguments

Gao, Kari and Yu [6] showed that the bounds for K∗
m ∪ L∗

n and K∗
m ∩ L∗

n are
both (2m−1 + 2m−2 − 1)(2n−1 + 2n−2 − 1) + 1. They used the following DFA’s
over alphabet Σ = {a, b, c, d}: For K, let DK = (QK , Σ, δK , 0, {m − 1}), with
QK = {0, . . . ,m−1}, a : (0, . . . ,m− 1), b defined by δK(0, b) = 0, δK(i, b) = i+1
(mod m), for i = 1, . . . ,m−1, and c, d : 1QK

. For L, let DL = (QL, Σ, δL, 0, {n−
1}), with QL = {0, . . . , n − 1}, a, b : 1QL

, c : (0, . . . n − 1), and d defined by
δK(0, d) = 0, δK(i, d) = i+ 1 (mod n), for i = 1, . . . , n− 1.

We extend these results to Km ⊕ L∗
n and K∗

n \ L∗
m, for which we now derive

upper bounds.

Proposition 2. Let Km and Ln be two regular languages with complexities m
and n. Then the complexities of K∗

m ◦L∗
n are at most (2m−1+2m−2− 1)(2n−1+

2n−2 − 1) + 1 for m,n > 3.

Proof. LetD1 = (Q1, Σ, δ1, 0, F1) be the DFA ofKm, andD2 = (Q2, Σ, δ2, 0, F2),
the DFA of Ln. Let N1 (N2) be the NFA for K∗

m (L∗
n) obtained by adding a new

initial and final state s1 (s2), transitions from state s1 (s2) the same as from 0
in D1 (D2), and an ε-transition from each final state of D1 (D2) to the initial
state 0 of D1 (D2). See Fig. 3 for an example of this construction. Let S1 and
S2 be the minimal DFA’s obtained from N1 and N2 by the subset construction
and minimization. Finally, let P be the direct product of S1 and S2.

The states of P are ordered pairs, where the first element is a subset of
{s1} ∪Q1 and the second is a subset of {s2} ∪Q2. Note that s1 and s2 can only
appear in the initial state ({s1}, {s2}) of P . After any input is applied to P , the
state has the form (S, T ), where S is a state of S1 other than {s1} (there are
at most 2m−1 + 2m−2 − 1 such states), and T is a state of S2 other than {s2}
(there are at most 2n−1 + 2n−2 − 1 such states), and this is independent of the
witnesses used. Thus (2m−1+2m−2− 1)(2n−1+2n−2− 1)+1 is an upper bound
for the number of states of the DFA for K∗ ◦ L∗. ⊓⊔
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NFA N2 of (W5(d, c, b, a))∗

c

a

0 1 2 3 4

dd

bs20 1 2 3s1 b

a, ba

a c, d c, d

ε, a

b, c, d

b, c, d b, d

c

c, d

a, b, c a, b, cd
d

a, ba, ba, c

a, b, c

ε, d

NFA N1 of (W4(a, b, c, d))∗

Fig. 3. NFA’s N1 and N2 of (W4(a, b, c, d))
∗ and (W5(d, c, b, a))

∗.

Theorem 2 (K∗ ◦ L∗). Let Km = Wm(a, b, c, d) and Ln = Wn(d, c, b, a). For
m,n > 3, the complexities of K∗

m ∪ L∗
n and K∗

m ∩ L∗
n are (2m−1 + 2m−2 −

1)(2n−1 +2n−2 − 1)+ 1. If K ′
m is the language of W{0},m, then the complexities

of (K ′
m)∗ \L∗

n and (K ′
m)∗⊕L∗

n are also (2m−1+2m−2− 1)(2n−1+2n−2− 1)+1.

Proof. Let the various automata be defined as in the proof of Proposition 2,
but this time with Km = Wm(a, b, c, d) and Ln = Wn(d, c, b, a). We now show
that all (2m−1 + 2m−2 − 1)(2n−1 + 2n−2 − 1) + 1 allowable states discussed in
Proposition 2 are reachable.

We first show that all allowable subsets of Q1 are reachable in D1, ignoring

D2. First, {s1}
c
−→ {0}

am−1

−−−→ {0,m− 1}. Suppose all states S with {0,m− 1} ⊆
S ⊆ Q1, |S| = k, k > 2 are reachable. All states S with {0, 1} ⊆ S ⊆ Q1 of size k
are now reachable by applying a. If S = {i1, . . . , ik} with i1 < · · · < ik < m− 1,

let j = i2 − i1 − 1; then {0, 1, i3 − j − i1, . . . , ik − j − i1}
(ac)jai1

−−−−−→ S.
Now states {0,m − 1} ⊆ S of size k + 1 can now be reached as follows:

{i1 − 1, . . . , ik−1 − 1,m− 2}
a
−→ {0, i1, . . . , ik−1,m− 1}.

Therefore all allowable states of D1 are reachable by words in {a, c}∗.
In N2, a and c map states s2 and 0 to 0. Therefore all allowable states of P of

the form (S, {0}) are reachable. A symmetric argument shows that all states T
of D2 are reachable by words in {b2, d}∗ (as b2 and b are the same transformation
on D2). All of these words map states S ⊆ Q1 to themselves, except in the case
0,m − 1 /∈ S, m − 2 ∈ S. Let S = {i1, . . . , ik} be such a state; then for all
allowable T , ({i1 − 1, . . . , ik − 1}, T ) is reachable, and reaches (S, T ) when a is
applied. Therefore all allowable states are reachable.

Next we show that all the states of P are distinguishable. Recall that for
K∗

m∪L∗
n andK∗

m∩L∗
n, we use {m−1} as the final state ofN1, and for (K ′

m)∗⊕L∗
n

and (K ′
m)∗\L∗

n, we use {0}.
Suppose we have states (S1, T1), (S2, T2) with T1 6= T2. Then there is a k

either in T1\T2 or in T2\T1; without loss of generality, assume k ∈ T1\T2. By
applying dn−1−k, we reach states (S1, T

′
1) and (S2, T

′
2), where n − 1 ∈ T ′

1\T
′
2.

Apply c2ac2 so that T ′
1 and T ′

2 are unchanged, but now 1, 2 /∈ S′
1 ∪ S′

2. Then
apply am−2 so 0,m− 1 /∈ S′′

1 ∪S′′
2 . This distinguishes the two states for K∗

m∪L∗
n

and (K ′
m)∗ ⊕ L∗

n. For K
∗
m ∩ L∗

n, since S1 6= ∅, we may apply a cyclic shift to D1

so that m− 1 ∈ S′
1 to distinguish the states. For (K ′

m)∗\L∗
n, we can assume that

h ∈ S′′
2 , and use am−1−h to map S′′

2 to S′′′
2 , where {0,m− 1} ⊆ S′′′

2 . This also

7



maps S′′
1 to S′′′

1 , and keeps T ′
1 and T ′

2 unchanged. Since n− 1 ∈ T ′
1\T

′
2, we have

(S′′′
1 , T ′

1) is non-final and (S′′′
2 , T ′

2) is final for (K
′
m)∗\L∗

n.
Now suppose S1 6= S2. For K∗

m ∪ L∗
n and K∗

m ∩ L∗
n the above argument is

symmetric. For the other two operations, apply a cyclic shift so that m − 1 ∈
S′
1\S

′
2. Now apply (cba)m−3 so that m− 1 ∈ S′′

1 \S
′′
2 , and 2, . . . ,m− 2 /∈ S′′

1 ∪S′′
2 .

Apply a so that 0 ∈ S′′′
1 \S′′′

2 . Then as above, apply b2dn−2 so that n−1 /∈ T ′
1∪T

′
2,

while leaving S′′′
1 and S′′′

2 unchanged. This distinguishes the states for (K ′
m)∗\L∗

n

and (K ′
m)∗ ⊕ L∗

n.
Therefore all (2m−1 + 2m−2 − 1)(2n−1 + 2n−2 − 1) states of the form (S, T )

are distinguishable. It remains to distinguish ({s1}, {s2}) from the other states.
As in Theorem 1, ({s1}, {s2}) is distinguished from all states except ({0}, {0})
by a. It is distinguishable from ({0}, {0}) by the choice of final state of D1. ⊓⊔

4 Products with Starred Arguments

4.1 The Language KL
∗

The complexity of KL∗ was studied by Cui, Gao, Kari, and Yu [5]. They showed
that m(2n−1 + 2n−2) − 2n−2 is a tight bound using the following witnesses
over alphabet Σ = {a, b, c}: For K, let DK = (QK , Σ, δK , q0, {m − 1}), with
QK = {q0, . . . , qm−1}, a : (q0, . . . , qm−1), δK(qi, b) = qi+1 for i = 0, . . . ,m − 3,
δK(qm−2, b) = q0, δK(qm−1, b) = qm−2, and δK(qi, c) = qi+1 for i = 0, . . . ,m− 3,
δK(qm−2, c) = q0, δK(qm−1, c) = qm−1. For L, let DL = (QL, Σ, δL, 0, {n− 1}),
with QL = {0, . . . , n − 1}, a : (0, . . . n − 1), δL(0, b) = 0, δL(i, b) = i + 1 for
i = 1, . . . , n − 2, δ(n − 1, b) = 1; c :

(

n−1
1

)

. We prove that two permutationally
equivalent dialects of Un(a, b, c) also meet the bound.

Theorem 3 (KL∗). Let Km = Tm(a, b, c), and Ln = Tn(b, a, c). For m,n > 3,
the complexity of KmL∗

n is m(2n−1 + 2n−2)− 2n−2.

Proof. Let D1 = (Q1, Σ, δ1, q0, {qm−1}) with Q1 = {q0, . . . , qm−1} be the DFA
of Km, and let D2 = (Q2, Σ, δ2, 0, {n−1}) with Q2 = {0, . . . , n− 1} be the DFA
of Ln. Let N2 be the NFA for L∗

n, and let N be the NFA for the product KmL∗
n.

Figure 4 shows our witnesses T4(a, b, c) and T5(b, a, c) and the NFA N for KL∗.
We perform the subset construction and minimization of N to obtain the DFA
P for the product KL∗.

a, b

0 1 2 3 4

b b b

s

a, c

q1 q2 q3

a, b

q0
cε

a

b, c

b, c b, cc

a

a, ca, cc

b, ε

a, c

a

a, b

Fig. 4. Witness N for T4(a, b, c)(T5(b, a, c))
∗.
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The states of P are subsets of Q1 ∪Q2 ∪ {s}. Note that qm−1 cannot appear
in a state of P without s, and vice versa. Also, n− 1 cannot appear without 0,
but 0 can appear without n − 1. Each state of D must contain exactly one of
{q0}, . . . , {qm−2} or {qm−1, s}, and either a (possibly empty) subset of Q2 not
containing n− 1, or subset of Q2 containing both n− 1 and 0. Hence there are
at most m(2n−1 + 2n−2) reachable subsets; we now show that all these subsets
can be reached.

Set {q0} is the initial state of P , set {qi} for i 6 m− 2 is reached by ai, and
{qm−1, s}, by am−1.

Suppose all allowable states of the form {qm−1, s} ∪ S, |S| 6 k, k > 0,
are reachable. Let S ⊆ Q2, |S| = k + 1. If 1 ∈ S and 0 /∈ S, then we have

{qm−1, s}∪(S\{1})
a
−→ {q0}∪S. If 0, 1 ∈ S, then {qm−1, s}∪(S\{0})

a
−→ {q0}∪S.

If 0 ∈ S and 1 /∈ S, then {qm−1, s} ∪ (S\{0})
ac
−→ {q0} ∪ S. Therefore all states

{q0} ∪ S, |S| = k + 1, and either 0 ∈ S or 1 ∈ S, are reachable. Every state
{q0} ∪ S, where n − 1 /∈ S, is reachable by an even number of b’s from a state
containing either 0 or 1. Every S = {0, i1, . . . , ik−1, n − 1} is also reachable in
this way (by mapping either 0 or 1 to i1). So all states {q0} ∪ S, |S| = k + 1,
are reachable. By applying cyclic shifts ai, all states {qi} ∪ S, i < m − 1 and
{qm−1, s} ∪ S are reachable.

Any state of the form {qm−1, s}∪T , where T ⊂ QL\{0, n−1}, is equivalent to
{qm−1, s, 0}∪ T , as they are both final and are mapped to the same state under
any input. So the number of distinguishable states of D is at most m(2n−1 +
2n−2)−2n−2. We prove that there are precisely that many distinguishable states.

Consider two states of the form {qi} ∪ S, {qm−1, s} ∪ T , where i < m − 1.
These states are distinguished by cbn−2. Any pair {qi} ∪ S, {qj} ∪ T , i 6= j can
by transformed into states of this form by applying a cyclic shift. Now consider
{qi} ∪ S, {qi} ∪ T , S 6= T , i < m − 1. There exists a cyclic shift bk which
transforms the states so that n− 1 ∈ S ⊕ T , and this distinguishes the states.

Then the only remaining case is {qm−1, s}∪S, {qm−1, s}∪T , and S 6= T . As
we stated earlier, if S⊕T = {0} then the states are indistinguishable. Otherwise,
let k ∈ S ⊕ T , k > 0. Apply bn−1−k so that n− 1 ∈ S ⊕ T . Then applying a to
map {qm−1, s} to {q0, 1} distinguishes the states. ⊓⊔

4.2 The Language K
∗
L

Cui, Gao, Kari and Yu [4] proved using quaternary witnesses that the complexity
of K∗L is 5 · 2m+n−3 − 2m−1 − 2n + 1. Let Σ = {a, b, c, d}. For K they used
DK = (QK , Σ, δK , q0, {m − 1}), with QK = {q0, . . . , qm−1}, a : (q0, . . . , qm−1),
δK(q0, b) = q0, δK(qi, b) = i + 1 mod m for i = 1, . . . ,m − 1, and c, d : 1QK

.
For L, their witness was DL = (QL, Σ, δL, 0, {n − 1}), with QL = {0, . . . , n −
1}, a, b : 1QL

, c : (0, . . . n − 1), d :
(

QL

0

)

. We show here that two quaternary
permutationally equivalent languages also work.

Theorem 4 (K∗L). Let Km = Um(a, b, c, d) and Ln = Un(d, c, b, a). For m,n >

3, the complexity of K∗
mLn is 5 · 2m+n−3 − 2m−1 − 2n + 1.

9



s

a

b

aa, b

b, db, c, dc, dc, da, b

c, d

ε, a, c

0 1 2 3 4

dd d

c

a, b a, b, c a, b, c a, c

c, d

a, b

εq0 q1 q2 q3

ε
b, d

D2 for U5(d, c, b, a)N1 for (U4(a, b, c, d))
∗

Fig. 5. NFA N for (U4(a, b, c, d))
∗ U5(d, c, b, a).

Proof. Let D1 = (Q1, Σ, δ1, q0, {qm−1}) with Q1 = {q0, . . . , qm−1} be the DFA
of Km, and let D2 = (Q2, Σ, δ2, 0, {n−1}) with Q2 = {0, . . . , n− 1} be the DFA
of Ln. Let N1 be the NFA for K∗

m, and let N be the NFA for the product K∗
mLn.

We perform the subset construction and minimization of N to obtain the DFA
P for the product K∗L. The construction is illustrated in Fig. 5.

Owing to the ε-transitions, the allowable states of the DFA are {s, 0}, all
(2m−1 − 1)(2n − 1) subsets of the form S ∪ T where ∅ ( S ⊆ Q1, , qm−1 /∈ S,
∅ ( T ⊆ Q2, and all (2m−2 − 1)(2n−1 − 1) subsets of the form S ∪ T , where
q0, qm−1 ∈ S ⊆ Q1 and 0 ∈ T ⊆ Q2. There are 5 · 2m+n−3 − 2m−1 − 2n + 2 such
subsets and we will now show that they are all reachable.

The initial state of P is {s, 0}. It is known from [2] that all allowable subsets
of N1 are reachable by words in {a, b}∗. These inputs all map 0 to itself, and
hence all allowable states of the form S ∪ {0} are reachable.

If qm−1 /∈ S and T = {t1, . . . tk}, then S ∪ {0, t2 − t1, . . . , tk − t1}
dt1

−−→ S ∪ T .
Let T = {0, t1, . . . , tk}, 0 < t1 < · · · < tk, and S = {qi1 , . . . , qil}, i1 < · · · < il <
m− 1. Also, let S′ = {qi2−i1−1, . . . , qil−i1−1, qm−2} and T ′ = {t1, . . . , tk}. Then

S′ ∪ T ′ ac2

−−→ {0, qi2−i1 , . . . , qil−i1} ∪ T
ai1

−−→ S ∪ T.

Moreover, S∪{t0, t1+t0, . . . , tk+t0} can be reached from S∪T by dt0 . Combining
these results shows that all allowable states S ∪ T with qm−1 /∈ S are reachable.
Finally, if S = {q0, qi1 , . . . , qik , qm−1}, and 0 ∈ T , then {qi1−1, . . . , qil−1, qm−2}∪

T
a
−→ S ∪ T . Therefore all allowable states are reachable.

For distinguishability, first consider states S1 ∪ T1, S2 ∪ T2. If T1 6= T2,
then applying a cyclic shift dk transforms the states so that n − 1 ∈ T1 ⊕ T2,
distinguishing the states. If S1 6= S2, apply a cyclic shift ak so that qm−1 ∈
S1 ⊕ S2. Then apply bd so that 0 ∈ T1 ⊕ T2, and the states are distinguishable
by the previous case.

Finally, the initial state {s}∪{0} is indistinguishable from {q0}∪{0}, as any
non-empty input transforms these two states into the same state. So then there
are 5 · 2m+n−3 − 2m−1 − 2n + 1 distinguishable states. ⊓⊔
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4.3 The Language K
∗
L

∗

The combined operation K∗L∗ appears not to have been studied before.

Proposition 3. The complexity of the operation K∗
mL∗

n is at most 2m+n−1 −
2m−1 − 3 · 2n−2 + 2 for m,n > 3.

Proof. Let D1 = (Q1, Σ, δ1, q0, F1) with Q1 = {q0, . . . , qm−1} be the DFA of
Km, and let D2 = (Q2, Σ, δ2, 0, F2) with Q2 = {0, . . . , n − 1} be the DFA of
Ln. Construct NFA’s N1 and N2 accepting K∗

m and L∗
n by adding new initial

states s1 and s2, which are also final. Let N be the NFA for K∗
mL∗

n, and let P
be the DFA obtained by the subset construction and minimization of N . These
constructions are illustrated in Fig. 6.

a, ba

0 1 2 3 4

dd

cs2s1
ε, a, c

a, ca, b

ε, b, d

NFA N2 of (U5(d, c, b, a))∗

q1 q2 q3
ε

ε

NFA N1 of (U4(a, b, c, d))∗

a

a, b

a, b

bq0

c, d b, db, c, dc, d

c, d

c, d a, b a, b, c a, b, c

dc, d

Fig. 6. NFA N of (U4(a, b, c, d))
∗(U5(d, c, b, a))

∗.

The initial state of P is {s1, s2}. Note that any state R of P containing s2
but not 0, is equivalent to R∪{0}, since both states are final because of s2, and
s2 and 0 have identical outgoing transitions. Hence we can ignore states like R
in our counting, and assume that every state containing s2 also contains 0. Due
to the ε-transitions, the allowable states of the DFA are {s1, s2}, and all subsets
of the form S ∪ T , where ∅ ( S ⊆ Q1, ∅ ( T ⊆ {s2} ∪ Q2, and fall into one of
the following cases:

– S ∩ F1 = ∅, T ∩ F2 = ∅;
– S ∩ F1 = ∅, T contains at least one state of F2 and 0;
– S contains at least one state of F1 and s2, 0 ∈ T .

One verifies that the possible number of states is greatest when there is only one
final state, say qm−1, in F1 and only one final state, say n− 1, in F2. Hence we
have the cases:

– qm−1 /∈ S, n− 1 /∈ T : (2m−1 − 1)(2n−1 − 1) states;
– qm−1 /∈ S, 0, n− 1 ∈ T : (2m−1 − 1)2n−2 states;
– q0, qm−1 ∈ S, s2, 0 ∈ T : 2m+n−3 states.

Therefore there are a total of 2m+n−1 − 2m−1 − 3 · 2n−2 + 2 allowable states.
Hence the complexity of K∗

mL∗
n is at most 2m+n−1 − 2m−1 − 3 · 2n−2 + 2. ⊓⊔
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Theorem 5 (K∗L∗). Let Km = Um(a, b, c, d) and Ln = Un(d, c, b, a). For

m,n > 3, the complexity of K∗
mL∗

n is 2m+n−1 − 2m−1 − 3 · 2n−2 + 2.

Proof. Let the various automata be defined as in the proof of Proposition 3,
but this time with Km = Um(a, b, c, d) and Ln = Un(d, c, b, a). The reachability
of all of the states of P follows the proof in Theorem 4 for all states S ∪ T
where n − 1 /∈ T . Let T = {0, t1, . . . , tk, n − 1}. If qm−1 /∈ S, then S ∪ {0, t2 −

t1, . . . , tk− t1, n−1− t1}
dt1

−−→ S∪T . If qm−1 ∈ S, say S = {q0, qi1 , . . . , qil , qm−1},

then {qi1 − 1, . . . , qil−1, qm−2} ∪ T
a
−→ S ∪ T . Therefore all allowable states are

reachable.
For distinguishability, first consider states S1∪T1, S2∪T2, where S1, S2 ⊆ Q1

and T1, T2 ⊆ {s2}∪Q2. The set of final states of the NFA is {s2, n−1}; however,
any set containing s1 or qm−1 also contains s2, and hence is a final state of P .
Note that applying c always results in a state S ∪ T , where qm−1, s2 /∈ S, and
applying b causes n−1 /∈ T . If T1 6= T2, then applying a cyclic shift dk transforms
the states so that n− 1 ∈ T1⊕T2, and then applying c distinguishing the states.
If S1 6= S2, apply a cyclic shift ak so that qm−1 ∈ S1 ⊕ S2, then apply b to
distinguish the states.

Finally, consider the initial state {s1, s2}, and any state R not contain s1,
since the initial state is the only one containing s1. There are three cases:

1. q0 6∈ R: Applying a, from {s1, s2} we reach {q1, 0}, and from R we reach
R′, where q1 6∈ R′. By the argument in the second paragraph of the proof,
{s1, s2} is distinguished from R.

2. q0 ∈ R, and R 6= {q0, 0}: If ad is applied, then {s1, s2} goes to {q1, 1}, and R
goes to R′ such that there exists x ∈ R′, x 6∈ {q1, 1}. Then these two states
are distinguishable by the previous argument.

3. R = {q0, 0}: State {s1, s2} is final, but {q0, 0} is not.

Hence all the allowable states are distinguishable and the theorem holds. ⊓⊔

5 Stars of Binary Operations

5.1 The Language (KL)∗

In 2008 Gao, K. Salomaa, and Yu [7] proved that 2m+n−1 + 2m+n−4 − (2m−1 +
2n−1−m− 1) is a tight upper bound for (KL)∗. They used the following DFA’s
over alphabet Σ = {a, b, c, d}: For K, let DK = (Q1, Σ, δK , q0, {qm−1}) with
a : (q0, . . . , qm−1), b : 1QK

, c defined by δK(q0, c) = δK(qm−1, c) = q0, δK(qi, c) =
qi+1, for i = 1, . . . ,m−2, and d : 1QK

. For L, letDL = (QL, Σ, δL, 0, {n−1}) with
a : 1QL

, b : (0, . . . , n− 1), c : 1QL
, and d defined by δL(0, d) = δL(n− 1, d) = 0,

δL(i, d) = i+1, for i = 1, . . . , n−2. We show that two permutationally equivalent
dialects Wm(a, b, c, d) and Wn(d, c, b, a) of Un(a, b, c, d) also meet the bound.

Theorem 6 ((KL)∗). Let Km = Wm(a, b, c, d) and Ln = Wn(d, c, b, a). For

m,n > 3, the complexity of (KmLn)
∗ is 2m+n−1+2m+n−4−(2m−1+2n−1−m−1).
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a

ε
0 1 3 4

d d

2

c, dd

cb

d

a, c a, ba, ba, b, ca, b, c

s q1 q3

a a a, b

b

a

c, dc, d

q2cq0

b, d

W5(d, c, b, a)W4(a, b, c, d)

b, c, d

ε

b, c, d

Fig. 7. NFA for ((W4(a, b, c, d) W5(d, c, b, a))
∗.

Proof. Let D1 = (Q1, Σ, δ1, q0, {qm−1}) with Q1 = {q0, . . . , qm−1} be the DFA
of Km, and let D2 = (Q2, Σ, δ2, 0, {n− 1}) with Q2 = {0, . . . , n− 1} be the DFA
of Ln. Let N be the NFA for (KL)∗. This NFA is shown in Fig. 7 for m = 4
and n = 5. Let D be the DFA obtained from N by the subset construction and
minimization.

The states of D are the initial state {s} and states of the form S ∪ T where
∅ ( S ⊆ Q1 and T ⊆ Q2. Because of the ε-transitions, the allowable states S∪T
must have either qm−1 /∈ S or qm−1 ∈ S, and 0 ∈ T . Moreover, if |S| > 1, then
T 6= ∅, as at least one ε-transition from n − 1 to q0 must have been used. The
number of allowable states is counted as follows:

1. First, we have the initial state {s}.
2. If T = ∅, then |S| = 1, and qm−1 6∈ S. There are m− 1 such states.
3. If T 6= ∅, then |S| > 1.

(a) n− 1 6∈ T : If qm−1 6∈ S, then there are (2m−1 − 1)(2n−1 − 1) such states.
Otherwise, qm−1 ∈ S and 0 ∈ T , and there are 2m+n−3 such states.

(b) n − 1 ∈ T : Then q0 ∈ S. If qm−1 6∈ S, there are 2m+n−3 such states.
Otherwise, qm−1 ∈ S and 0 ∈ T , and there are 2m+n−4 such states.

Altogether we have 2m+n−1 + 2m+n−4 − (2m−1 + 2n−1 −m− 1) states. We will
now show they are all reachable.

The initial state is {s}. We have {s}
b
−→ {q0}

ai

−→ {qi} for i < m− 1.
For i < m − 1 and T = {t1, . . . , tk} ⊆ Q2\{n − 1} with t1 < · · · < tk, the

state {qi}∪T is reachable by {qi}∪{t2−t1, . . . , tk−t1}
amdt1

−−−−→ {qi}∪T . Suppose
n − 1 ∈ T , say T = {t1, . . . , tk, n − 1}. If T 6= Q2, then the state {q0} ∪ T is
reachable by a applying a cyclic shift dl to some {q0} ∪ T ′, where n − 1 /∈ T ′.

Moreover, {qm−2}∪ (Q2\{n−1})
da
−→ {q0, q1, qm−1}∪Q2

cac
−−→ {q0}∪Q2. Finally,

if 0 ∈ T then {qm−2} ∪ T
a
−→ {qm−1} ∪ T . So all allowable states of the form

S ∪ T , |S| = 1 are reachable.
Let S = {qi1 , . . . , qik}, 0 < i1 < · · · < ik. Since n − 1 /∈ T , we have

{qi2−i1 , . . . , qik−i1}∪T
dnai1

−−−−→ S∪T . Now suppose S = {q0, qi2 , . . . , qik}. If n−1 ∈

T , then {q0, qi3−i2 , . . . , qik−i2} ∪ T
a(ac2)i2−1

−−−−−−−→ S ∪ T . If n− 1 /∈ T and qm−1 ∈ S,
then T = {0, t2, . . . , tl} and tl < n − 1. Let T ′ = {0, t2 − 1, . . . , tl − 1, n − 1}.
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Then S ∪ T ′ is reachable, and S ∪ T ′ d
−→ S ∪ T ∪ {1}; if 1 /∈ T , apply b2 to get

S ∪ T .
Finally, suppose q0 ∈ S, qm−1 6∈ S, and n− 1 6∈ T . Suppose T = {t1, . . . , tl},

t1 < · · · < tl, and let T ′′ = {t2 − t1 − 1, . . . , tl − t1 − 1, n − 1}. Since q0 ∈ S
and n− 1 ∈ T , state S ∪ T ′′ is reachable. Then we reach S ∪ T from S ∪ T ′′ by
applying dt1+1.

Therefore all the allowable states are reachable.
We now show all states are disintinguishable. Let S1 ∪ T1, S2 ∪ T2 be two

distinct states. If T1 6= T2, then the states are distinguishable by a cyclic shift
dk. If S1 6= S2, without loss of generality we may assume qm−1 ∈ S1 ⊕ S2. Then
applying b2dn−1 results in states S′

1∪T ′
1, S

′
2∪T ′

2, where 0 ∈ T ′
1⊕T ′

2, so the states
are distinguishable. Finally, the initial state {s} is distinguished from every state
other than {q0} by a; it is distinguishable from {q0} because it is final. ⊓⊔

5.2 The Languages (K ∪ L)∗

In 2007 A. Salomaa, K. Salomaa, and S. Yu [10] showed that the complexity
of (K ∪ L)∗ is 2m+n−1 − (2m−1 + 2n−1 − 1) with ternary witnesses. Jirásková
and Okhotin [9] used binary witnesses: For K, let DK = (Q1, Σ, δK , 0, {0})
with a : (0, . . . ,m− 1), and b defined by δK(i, b) = i + 1, for i = 0, . . . ,m − 2,
δK(m − 1, b) = 1. For L, let DL = (QL, Σ, δL, 0, {0}) with a :

(

0
1

)

and b :
(0, . . . , n− 1). Permutationally equivalent binary dialects of Un(a, b, c) can also
be used. Let Sn = Sn(a, b) = (Q,Σ, δS, 0, {0}), where a : (0, . . . , n − 1), and
b :

(

0
1

)

. The following theorem was proved in [2]:

Theorem 7 ((Km∪Ln)
∗). For m,n > 3, the complexity of (Sm(a, b)∪Sn(b, a))

∗

is 2m+n−1 − (2m−1 + 2n−1 − 1).

5.3 The Language (K ∩ L)∗

It was also proved in [9] that the complexity of (K∩L)∗ is 2mn−1+2mn−2, which
is the composition of the complexities of intersection and star. Their witnesses
K and L were over an alphabet of six letters, Σ = {a, b, c, d, e, f}: For K,
let DK = (QK , Σ, δK , 0, {m− 1}), with QK = {0, . . . ,m − 1}. For L, let DL =
(QL, Σ, δL, 0, {n−1}), with QL = {0, . . . , n−1}. The transitions were as follows:

DK DL

a : (0, . . . ,m− 1) a : (0, . . . , n− 1)
b : 1QK

b : (0, . . . , n− 1)
c : (1, . . . ,m− 1) c : 1QL

d : 1QK
d : (1, . . . , n− 1)

e :
(

1
0

)

e : 1QL

f : 1QK
f :

(

1
0

)

We conjecture that quinary witnesses can also be used. Let Σ = {a, b, c, d, e}
and Un(a, b, c, d, e) = (QK , Σ, δU , 0, {n − 1}), where QK = (0, . . . , n − 1}, a :
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(0, . . . , n − 1), b : (0, 1), c :
(

n−1
0

)

, d = 1QK
, and e : (1, . . . n − 1). Let π be

the permutation that sends {a, b, c, d, e} to {e, c, b, a, d}, let D1 = Un(a, b, c, d, e),
and D2 = Un(e, c, b, a, d). The transitions in D1 and D2 are:

D1 D2

a : (0, . . . ,m− 1) π(a) : 1Q2

b : (0, 1) π(b) :
(

n−1
0

)

c :
(

m−1
0

)

π(c) : (0, 1)
d : 1Q1

π(d) : (1, . . . , n− 1)
e : (1, . . . ,m− 1) π(e) : (0, . . . , n− 1)

Note that Un(a, b, c, d, e) is an extension of Un(a, b, c, d) to 5 letters.

Conjecture 1 ((Km∩Ln)
∗). LetKm = Um(a, b, c, d, e) and Ln = Un(e, c, b, a, d).

Then the complexity of (Km ∩ Ln)
∗ is 2mn−1 + 2mn−2 for m,n > 3.

This has been verified for m = 3 and n = 3, 4, 5, 6 and for m = 4 and n = 4, 5.

5.4 The Language (K \ L)∗

Theorem 8 ((Km \ Ln)
∗). The complexity of the operation (Km \ Ln)

∗ is

2mn−1 + 2mn−2 for m,n > 3, and it is met by the witnesses Km and Ln, where

Km and Ln are the witnesses of Jirásková and Okhotin for intersection.

Proof. This follows since (K \ L)∗ = (K ∩ L)∗. ⊓⊔

If Conjecture 1 holds, then we also have

Conjecture 2 ((Km\Ln)
∗). LetKm = Um(a, b, c, d, e) and Ln = Un(e, c, b, a, d).

Then the complexity of (Km ∩ Ln)
∗ is 2mn−1 + 2mn−2 for m,n > 3.

5.5 The Language (K ⊕ L)∗

The complexity of this combined operation remains open.

6 Conclusions

We have proved that the universal witnesses Un(a, b, c) and Un(a, b, c, d), along
with their permutational equivalents Un(b, a, c) and Un(d, c, b, a), and dialects
U{0},n(a, b, c), Tn(a, b, c), Tn(b, a, c),Wn(a, b, c, d), W{0},n(a, b, c, d),Wn(d, c, b, a)
suffice to act as witnesses for all state complexity bounds involving binary
boolean operations and product combined with star. In the case of one or two
starred arguments, we have shown that it is efficient to consider all four boolean
operations together. The use of universal witnesses and their dialects simplified
several proofs, and allowed us to utilize the similarities in the witnesses.
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