Abstract
The aim of this work is to certify lower bounds for real-valued multivariate functions, defined by semialgebraic or transcendental expressions. The certificate must be, eventually, formally provable in a proof system such as Coq. The application range for such a tool is widespread; for instance Hales’ proof of Kepler’s conjecture yields thousands of inequalities. We introduce an approximation algorithm, which combines ideas of the max-plus basis method (in optimal control) and of the linear templates method developed by Manna et al. (in static analysis). This algorithm consists in bounding some of the constituents of the function by suprema of quadratic forms with a well chosen curvature. This leads to semialgebraic optimization problems, solved by sum-of-squares relaxations. Templates limit the blow up of these relaxations at the price of coarsening the approximation. We illustrate the efficiency of our framework with various examples from the literature and discuss the interfacing with Coq.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)
Hales, T.C.: Introduction to the flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms, Proofs. Dagstuhl Seminar Proceedings, vol. 05021, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)
Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theor. Comput. Sci. 409(2), 269–281 (2008)
Kaltofen, E.L., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients. JSC 47(1), 1–15 (2012); In memory of Wenda Wu (1929–2009)
Monniaux, D., Corbineau, P.: On the generation of Positivstellensatz witnesses in degenerate cases. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 249–264. Springer, Heidelberg (2011)
Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62. Springer, Heidelberg (2007)
Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer, Heidelberg (2007)
Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)
Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with taylor interval approximations. CoRR, abs/1301.1702 (2013)
Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfiability over the reals. CoRR, abs/1204.3513 (2012)
Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11(3), 796–817 (2001)
Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. DIMACS Ser. Discrete Math. Theoret. Comput. Sci, vol. 60, pp. 83–99. Amer. Math. Soc., Providence (2003)
Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM Journal on Optimization 17, 218–242 (2006)
Zumkeller, R.: Rigorous Global Optimization. PhD thesis, Ècole Polytechnique (2008)
Hansen, E.R.: Sharpening interval computations. Reliable Computing 12(1), 21–34 (2006)
Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. part i: motivation, convergence and numerical results. Math. Program. 127(2), 245–295 (2011)
Montaz Ali, M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. of Global Optimization 31(4), 635–672 (2005)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)
Adje, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis. Logical Methods in Computer Science 8(1), 1–32 (2012)
Fleming, W.H., McEneaney, W.M.: A max-plus-based algorithm for a Hamilton-Jacobi-Bellman equation of nonlinear filtering. SIAM J. Control Optim. 38(3), 683–710 (2000)
Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim. 47(2), 817–848 (2008)
McEneaney, W.M., Deshpande, A., Gaubert, S.: Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs. In: Proc. of the 2008 American Control Conference, Seattle, Washington, USA, pp. 4684–4690 (June 2008)
McEneaney, W.M.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J. Control Optim. 46(4), 1239–1276 (2007)
Gaubert, S., McEneaney, W.M., Qu, Z.: Curse of dimensionality reduction in max-plus based approximation methods: Theoretical estimates and improved pruning algorithms. In: CDC-ECC [36], pp. 1054–1061
Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Certification of inequalities involving transcendental functions: combining sdp and max-plus approximation. To appear in the Proceedings of the European Control Conference, ECC 2013, Zurich (2013)
Lasserre, J.B., Putinar, M.: Positivity and optimization for semi-algebraic functions. SIAM Journal on Optimization 20(6), 3364–3383 (2010)
Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K.: A high-performance software package for semidefinite programs: Sdpa7. Technical report, Dept. of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan (2010)
Akian, M., Gaubert, S., Kolokoltsov, V.N.: Set coverings and invertibility of functional galois connections. In: Litvinov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics, pp. 19–51. American Mathematical Society (2005)
Calafiore, G., Dabbene, F.: Reduced vertex set result for interval semidefinite optimization problems. Journal of Optimization Theory and Applications 139, 17–33 (2008), doi:10.1007/s10957-008-9423-1
Riener, C., Theobald, T., Andrén, L.J., Lasserre, J.B.: Exploiting symmetries in sdp-relaxations for polynomial optimization. CoRR, abs/1103.0486 (2011)
Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: Sparsepop—a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2) (2008)
Montanher, T.M.: Intsolver: An interval based toolbox for global optimization, Version 1.0 (2009), www.mathworks.com
Hansen, E.R., Greenberg, R.I.: An interval newton method. Applied Mathematics and Computation 12(2-3), 89–98 (1983)
Brisebarre, N., Joldeş, M.: Chebyshev interpolation polynomial-based tools for rigorous computing. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, pp. 147–154. ACM, New York (2010)
Lasserre, J.B., Thanh, T.P.: Convex underestimators of polynomials. In: CDC-ECE [36], pp. 7194–7199
Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, Orlando, FL, USA, December 12-15. IEEE (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Allamigeon, X., Gaubert, S., Magron, V., Werner, B. (2013). Certification of Bounds of Non-linear Functions: The Templates Method. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds) Intelligent Computer Mathematics. CICM 2013. Lecture Notes in Computer Science(), vol 7961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39320-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-39320-4_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39319-8
Online ISBN: 978-3-642-39320-4
eBook Packages: Computer ScienceComputer Science (R0)