Abstract
Euler’s speculum musicum is a finite selection of tones from the two dimensional tone lattice known as the Tonnetz. The idea of representing larger or smaller collections of tones as finite subsets of the Tonnetz reappears in the scholarly discourse in various contexts. However, formal rules for such selections that would satisfactorily reflect musical reality are not known: those proposed in the past are either too restrictive (not allowing all musically relevant tone systems to enter the model) or too loose (not preventing musically irrelevant tone systems from entering the model). The paper offers a formal framework that yields selections satisfactorily reflecting the musical reality. The framework draws methods from the Minkowski geometry of numbers. It is shown that only selection bodies of very specific shapes called (skewed) selection polygons lead to relevant selections. Manifold music-theoretical examples include chromatic, superchromatic, and subchromatic tone systems.
This paper was supported by EURIAS Junior Fellowship at NIAS awarded to the author.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barbour, J.M.: Tuning and Temperament: A Historical Survey. Michigan State College Press, East Lansing (1951)
Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer Classics in Mathematics. Springer (1997) (reprint of 1959 and 1971 Springer-Verlag editions)
Clampitt, D.: Pairwise Well-Formed Scales: Structural and Transformational Properties. PhD dissertation. State University of New York at Buffalo (1997)
Clough, J., Douthett, J.: Maximally Even Sets. Journal of Music Theory 35, 93–173 (1991)
Douthett, J., Steinbach, P.: Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition. Journal of Music Theory 42(2), 241–263 (1998)
Erlich, P.: A gentle introduction to Fokker periodicity blocks (1999), http://www.tonalsoft.com/enc/f/fokker-gentle-1.aspx
Euler, L.: De harmoniae veris principiis per speculum musicum repraesentatis. In: Novi Commentarii academiae scientiarum Petropolitanae, vol. 18, pp. 330–353. Teubner, St. Petersburg (1744)
Fokker, A.D.: Selections from the Harmonic Lattice of Perfect Fifths and Major Thirds Containing 12, 19, 22, 31, 41 or 53 Notes. In: Proceedings of KNAW, Series B, vol. 71, pp. 251–266. KNAW, Amsterdam (1968)
Fokker, A.D.: Unison Vectors and Periodicity Blocks in the Three-Dimensional (3-5-7-) Harmonic Lattice of Notes. In: Proceedings of KNAW, Series B, vol. 72(3), pp. 153–168. KNAW, Amsterdam (1969)
Hancock, H.: Development of the Minkowski Geometry of Numbers. Macmillan (1939) (Republished in 1994 by Dover)
Honingh, A.: The Origin and Well-Formedness of Tonal Pitch Structures. Institute for Logic, Language and Computation, Amsterdam (2006)
Honingh, A., Bod, R.: Convexity and the Well-formedness of Musical Objects. Journal of New Music Research 34, 293–303 (2005)
Hook, J.: Spelled Heptachords. In: Agon, C., et al. (eds.) Mathematics and Computation in Music 2011, pp. 84–97. Springer, Berlin (2011)
Conway, J., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, Berlin (1999)
Mazzola, G.: The Topos of Music: Geometric Logic of Concepts, Theory, and Performance. Birkhäuser, Basel (2002)
Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1910)
Noll, T.: Morphologische Grundlagen der abendländischen Harmonik. (Musikometrika 7.) Brockmeyer, Bochum (1997)
Oettingen, A.V.: Die Grundlage der Musikwissenschaft und das duale Reininstrument. Abhandllungen der mathematisch-physischen Klasse der Königl. Sächsischen Gesellschaft der Wissenschaften 34(2), Leipzig (1916)
Tanaka, S.: Studien im Gebiete der reinen Stimmung. In: Chrysander, F., Spitta, P., Adler, G. (eds.) Vierteljahrsschrift für Musikwissenschaft, vol. 6, pp. 1–90. Breitkopf und Härtel, Leipzig (1890)
Tymoczko, D.: Scale Networks and Debussy. Journal of Music Theory 48, 219–294 (2004)
Waller, D.A.: Some Combinatorial Aspects of the Musical Chords. The Mathematical Gazette 62, 12–15 (1978)
Wild, J.: Pairwise Well-Formed Scales and a Bestiary of Animals on the Hexagonal Lattice. In: Chew, E., et al. (eds.) Mathematics and Computation in Music 2009, pp. 273–285. Springer, Berlin (2009)
Žabka, M.: Well-Formedness in Two Dimensions: A Generalization of Carey and Clampitt’s Theorem. Journal of Mathematics and Music 4(1), 1–30 (2010)
Žabka, M.: Non-enharmonic Diatonic Theory. In: Paper read at Clough Memorial Conference. Yale University (June 13, 2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Žabka, M. (2013). The Minkowski Geometry of Numbers Applied to the Theory of Tone Systems. In: Yust, J., Wild, J., Burgoyne, J.A. (eds) Mathematics and Computation in Music. MCM 2013. Lecture Notes in Computer Science(), vol 7937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39357-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-39357-0_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39356-3
Online ISBN: 978-3-642-39357-0
eBook Packages: Computer ScienceComputer Science (R0)