Abstract
This article presents a first attempt at establishing a category-theoretical model of creative processes. The model, which is applied to musical creativity, discourse theory, and cognition, suggests the relevance of the notion of “colimit” as a unifying construction in the three domains as well as the central role played by the Yoneda Lemma in the categorical formalization of creative processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acotto, E., Andreatta, M.: Between Mind and Mathematics. Different Kinds of Computational Representations of Music. Mathematics and Social Sciences 199(50e année), 9–26 (2012)
Bastiani(-Ehresmann), A., Ehresmann, C.: Categories of sketched structures, Cahiers Top. et Géom. Dif. XIII-2 (1972), http://archive.numdam.org
Boden, M.A.: Conceptual Spaces. In: Meusburger, P., et al. (eds.) Milieus of Creativity. Springer (2009)
Cope, D.: Computer Models of Musical Creativity. MIT Press, Cambridge (2005)
Edelman, G.M.: The remembered Present. Basic Books, New York (1989)
Ehresmann, A., Vanbremeersch, J.-P.: Semantics and Communication for Memory Evolutive Systems. In: Lasker (ed.) Proc. 6th Intern. Conf. on Systems Research. International Institute for Advanced Studies in Systems Research and Cybernetics, University of Windsor (1992), http://ehres.pagesperso-orange.fr
Ehresmann, A., Vanbremeersch, J.-P.: Memory Evolutive Systems: Hierarchy, Emergence, Cognition. Elsevier, Amsterdam (2007)
Fauconnier, G., Turner, M.: The way we think. Basic Books (2002) (reprint)
Forth, J., Wiggins, G.A., McLean, A.: Unifying Conceptual Spaces: Concept Formation in Musical Creative Systems. Minds & Machines 20, 503–532 (2010)
Gärdenfors, P.: Conceptual Spaces: On the Geometry of Thought. MIT Press, Cambridge (2000)
Goguen, J.: An Introduction to Algebraic Semiotics, with Application to User Interface Design. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 242–291. Springer, Heidelberg (1999)
Goguen, J., Harrell, D.F.: Style: A Computational and Conceptual Blending-Based Approach. In: Dubnov, S., et al. (eds.) The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning. Springer (2009)
Guitart, R.: L’idée de Logique Spéculaire. Journées Catégories, Algèbres, Esquisses, Néo-esquisses, Caen, Septembre 27-30, p. 6 (1994)
Guitart, R.: Cohomological Emergence of Sense in Discourses (As Living Systems Following Ehresmann and Vanbremeersch). Axiomathes 19(3), 245–270 (2009)
Guitart, R.: A Hexagonal Framework of the Field \(\mathbb{F}_4\) and the Associated Borromean Logic. Log. Univers. 6, 119–147 (2012)
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the Structural Core of Human Cerebral Cortex. PLoS Biology 6(7), 1479–1493 (2008)
Halford, G.S., Wilson, W.H.: A Category-Theory approach to cognitive development. Cognitive Psychology 12, 356–411 (1980)
Hofstadter, D.: Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thoughts. Basic Books (1995)
Kan, D.M.: Adjoint Functors. Transactions of the American Mathematical Society 87, 294–329 (1958)
Lawvere, W.F.: Functorial Semantics of Algebraic Theories. Ph.D. Thesis, Columbia University (1963)
Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971)
Mazzola, G., et al.: The Topos of Music—Geometric Logic of Concepts, Theory, and Performance. Birkhäuser, Basel (2002)
Mazzola, G., Park, J., Thalmann, F.: Musical Creativity, Heidelberg. Springer Series Computational Music Science (2011)
Mazzola, G.: Singular Homology on Hypergestures. Journal of Mathematics and Music 6(1), 49–60 (2012)
Peirce, C.S.: Collected Papers, vol. I-VI (1931-1935), par Hartshorne, C., Weiss, P.: vol. VII-VIII (1958), par Burks, W.: Harvard University Press. Harvard
Pereira, F.C.: Creativity and Artificial Intelligence - A Conceptual Blending Approach (2007)
Phillips, S., Wilson, W.H.: Categorical Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition. PLoS Computational Biology 6(7), 1–14 (2010)
Post, E.: Introduction to a General Theory of Elementary Propositions. American Journal of Mathematics 43, 163–185 (1921)
Shannon, C., Weaver, W.: The Mathematical Theory of Communication (1949)
Spanier, E.: Algebraic Topology. McGraw Hill, New York (1966)
Uhde, J.: Beethovens Klaviermusik III. Reclam, Stuttgart (1974)
Zbikowski, L.M.: Conceptualizing Music: Cognitive Structures, Theory, and Analysis. Oxford University Press (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Andreatta, M., Ehresmann, A., Guitart, R., Mazzola, G. (2013). Towards a Categorical Theory of Creativity for Music, Discourse, and Cognition. In: Yust, J., Wild, J., Burgoyne, J.A. (eds) Mathematics and Computation in Music. MCM 2013. Lecture Notes in Computer Science(), vol 7937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39357-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-39357-0_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39356-3
Online ISBN: 978-3-642-39357-0
eBook Packages: Computer ScienceComputer Science (R0)