Abstract
We present a comparative study for tracking multiple persons using cameras with overlapping views. The evaluated methods consist of two batch mode trackers (Berclaz et al, 2011, Ben-Shitrit et al, 2011) and one recursive tracker (Liem and Gavrila, 2011), which integrate appearance cues and temporal information differently. We also added our own improved version of the recursive tracker. Furthermore, we investigate the effect of the type of background estimation (static vs. adaptive) on tracking performance. Experiments are performed on two novel and challenging multi-person surveillance data sets (indoor, outdoor), made public to facilitate benchmarking. We show that our adaptation of the recursive method outperforms the other stand-alone trackers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben Shitrit, H., et al.: Tracking multiple people under global appearance constraints. In: Proc. of the ICCV, pp. 137–144 (2011)
Berclaz, J., et al.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. on PAMI 33(9), 1806–1819 (2011)
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. JIVP 2008, 1–10 (2008)
Breitenstein, M.D., et al.: Online Multi-Person Tracking-by-Detection from a Single, Uncalibrated Camera. IEEE Trans. on PAMI 33(9), 1820–1833 (2011)
Calderara, S., Cucchiara, R., Prati, A.: Bayesian-Competitive consistent labeling for people surveillance. IEEE Trans. on PAMI 30(2), 354–360 (2008)
Collins, R.: Mean-shift blob tracking through scale space. In: Proc. of the IEEE CVPR, vol. 2, p. II–234 (2003)
Du, W., Piater, J.: Multi-camera people tracking by collaborative particle filters and principal axis-based integration. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 365–374. Springer, Heidelberg (2007)
Fleuret, F., et al.: Multicamera people tracking with a probabilistic occupancy map. IEEE Trans. on PAMI 30(2), 267–282 (2008)
Fortmann, T., Bar-Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint probabilistic data association. IEEE JOE 8(3), 173–184 (1983)
Guan, L., Franco, J.S., Pollefeys, M.: Multi-view occlusion reasoning for probabilistic silhouette-based dynamic scene reconstruction. IJCV 90(3), 283–303 (2010)
Huang, C.C., Wang, S.J.: A bayesian hierarchical framework for multitarget labeling and correspondence with ghost suppression over multicamera surveillance system. IEEE Trans. on ASE 9(1), 16–30 (2012)
Kang, J., Cohen, I., Medioni, G.: Tracking people in crowded scenes across multiple cameras. In: ACCV, vol. 7, p. 15 (2004)
Khan, S., Shah, M.: Tracking multiple occluding people by localizing on multiple scene planes. IEEE Trans. on PAMI 31(3), 505–519 (2009)
Kim, K., Davis, L.S.: Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 98–109. Springer, Heidelberg (2006)
Liem, M., Gavrila, D.M.: Multi-person localization and track assignment in overlapping camera views. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 173–183. Springer, Heidelberg (2011)
Mittal, A., Davis, L.S.: M 2 Tracker: a multi-view approach to segmenting and tracking people in a cluttered scene. IJCV 51(3), 189–203 (2003)
Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics, 32–38 (1957)
Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Trans. on PAMI 22(8), 831–843 (2000)
Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. on Automatic Control 24(6), 843–854 (1979)
Santos, T.T., Morimoto, C.H.: Multiple camera people detection and tracking using support integration. PRL 32(1), 47–55 (2011)
Sobral, A.C.: BGSLibrary: A opencv c++ background subtraction library (2012), software available at http://code.google.com/p/bgslibrary/
Szeliski, R.: Rapid octree construction from image sequences. CVGIP 58(1), 23–32 (1993)
Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: Proc. of the IEEE CVPR, pp. 1–8 (2008)
Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. PRL 27(7), 773–780 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liem, M.C., Gavrila, D.M. (2013). A Comparative Study on Multi-person Tracking Using Overlapping Cameras. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-39402-7_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39401-0
Online ISBN: 978-3-642-39402-7
eBook Packages: Computer ScienceComputer Science (R0)