Abstract
This paper tackles the problem of 3D object pose tracking from monocular cameras. Data association is performed via a variant of the Iterative Closest Point algorithm, thus making it robust to noise and other artifacts. We re-initialise the hypothesis space based on the resulting re-projection error between hypothesised models and observed image objects. This is performed through a non-linear minimisation step after correspondences are found. The use of multi-hypotheses and correspondences refinement, lead to a robust framework. Experimental results with benchmark image sequences indicate the effectiveness of our framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4), 1–46 (2006)
Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects: a survey. In: Foundations and Trends in Computer Graphics and Vision (2005)
Harris, C., Stennet, C.: RAPiD – A video-rate object tracker. In: British Machine Vision Conference, pp. 73–77 (1990)
Koller, D., Daniilidis, K., Nagel, H.: Model-based object tracking in monocular image sequences of road traffic scenes. International Journal of Computer Vision 10, 257–281 (1993)
Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 932–946 (2002)
Fitzgibbon, A.: Robust registration of 2D and 3D point sets. Image and Vision Computing 21(13), 1145–1153 (2003)
Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(3), 266–280 (2000)
Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3D tracking using online and offline information. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1385–1391 (2004)
Azad, P., Münch, D., Asfour, T., Dillmann, R.: 6-DoF model-based tracking of arbitrarily shaped 3D objects. In: IEEE Int. Conf. on Robotics and Automation (2011)
Puppili, M., Calway, A.: Real time camera tracking using known 3D models and a particle filter. In: IEEE Int. Conf. on Pattern Recognition (2006)
Choi, C., Christensen, H.I.: Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features. The International Journal of Robotics Research 31(4), 498–519 (2012)
Doucet, A., Godsill, S., Andrieu, C.: On Sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)
Argyros, A.A., Lourakis, M.I.A.: Real-time tracking of multiple skin-colored objects with a possibly moving camera. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 368–379. Springer, Heidelberg (2004)
Baltzakis, H., Argyros, A.A.: Propagation of pixel hypotheses for multiple objects tracking. In: Bebis, G., et al. (eds.) ISVC 2009, Part II. LNCS, vol. 5876, pp. 140–149. Springer, Heidelberg (2009)
Liao, P.S., Chen, T.S., Chung, P.C.: A fast algorithm for multi-level thresholding. Journal of Information Science and Engineering 17, 713–727 (2001)
Rousseeuw, P.J.: Least median of squares regression. Journal of the American Statistical Association 79(388), 871–880 (1984)
Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image and Vision Computing 23, 299–309 (2005)
Lourakis, M.I.A.: Sparse non-linear least squares optimization for geometric vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 43–56. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chliveros, G., Pateraki, M., Trahanias, P. (2013). Robust Multi-hypothesis 3D Object Pose Tracking. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-39402-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39401-0
Online ISBN: 978-3-642-39402-7
eBook Packages: Computer ScienceComputer Science (R0)