Skip to main content

Probabilistic Cue Integration for Real-Time Object Pose Tracking

  • Conference paper
Computer Vision Systems (ICVS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7963))

Included in the following conference series:

  • 3429 Accesses

Abstract

Robust real time object pose tracking is an essential component for robotic applications as well as for the growing field of augmented reality. Currently available systems are typically either optimized for textured objects or for uniformly colored objects. The proposed approach combines complementary interest points in a common tracking framework which allows to handle a broad variety of objects regardless of their appearance and shape. A thorough evaluation of state of the art interest points shows that a multi scale FAST detector in combination with our own image descriptor outperforms all other combinations. Additionally, we show that a combination of complementary features improves the tracking performance slightly further.

The work described in this article has been funded by the European project under the contract no. 600623, as well as by the Austrian Science Fund under the grant agreements I 513-N23 and TRP 139-N23 and the Austrian Research Promotion Agency under the grant agreement 836490.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  2. Comparison of Affine-Invariant Local Detectors and Descriptors. In: European Signal Processing Conference (2004)

    Google Scholar 

  3. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. IJCV 65(1), 43–72 (2005)

    Article  Google Scholar 

  4. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. PAMI 32, 105–119 (2010)

    Article  Google Scholar 

  5. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10), 761–767 (2004)

    Article  Google Scholar 

  6. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). CVIU 110(3), 346–359 (2008)

    Google Scholar 

  7. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: ICCV, pp. 2564–2571 (2011)

    Google Scholar 

  8. Mörwald, T., Zillich, M., Prankl, J., Vincze, M.: Self-monitoring to improve robustness of 3D object tracking for robotics. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2830–2837 (2011)

    Google Scholar 

  9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  10. Drummond, T., Cipolla, R.: Real-Time Visual Tracking of Complex Structures. PAMI 24(7), 932–946 (2002)

    Article  Google Scholar 

  11. Comport, A.I., Kragic, D., Marchand, E., Chaumette, F.: Robust Real-Time Visual Tracking: Comparison, Theoretical Analysis and Performance Evaluation. In: ICRA (2005)

    Google Scholar 

  12. Babenko, B., Yang, M.H.: Robust Object Tracking with Online Multiple Instance Learning. PAMI 33(8), 1619–1632 (2011)

    Google Scholar 

  13. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. IJCV 29(1), 5–28 (1998)

    Article  Google Scholar 

  14. Klein, G., Murray, D.: Full-3D Edge Tacking with a Particle Filter. In: BMVC, vol. 3, pp. 1119–1128 (2006)

    Google Scholar 

  15. Cai, Y., de Freitas, N., Little, J.J.: Robust Visual Tracking for Multiple Targets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 107–118. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Choi, C., Christensen, H.I.: 3D textureless object detection and tracking: An edge-based approach. In: IROS, pp. 3877–3884 (2012)

    Google Scholar 

  17. Chestnutt, J., Kagami, S., Nishiwaki, K., Kuffner, J., Kanade, T.: GPU-Accelerated Real-Time 3D Tracking for Humanoid Locomotion. In: IROS (2007)

    Google Scholar 

  18. Sánchez, J.R., Álvarez, H., Borro, D.: Towards Real Time 3D Tracking and Reconstruction on a GPU using Monte Carlo Simulations. In: ISMAR, pp. 185–192 (2010)

    Google Scholar 

  19. Masson, L., Jurie, F., Dhome, M.: Contour/texture approach for visual tracking. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 661–668. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Vacchetti, L., Lepetit, V., Fua, P.: Combining Edge and Texture Information for Real-Time Accurate 3D Camera Tracking. In: ISMAR (2004)

    Google Scholar 

  21. Kyrki, V., Kragic, D.: Integration of model-based and model-free cues for visual object tracking in 3D. In: ICRA, pp. 1566–1572 (2005)

    Google Scholar 

  22. Pressigout, M., Marchand, E.: Real-time Hybrid Tracking using Edge and Texture Information. IJRR 26(7), 689–713

    Google Scholar 

  23. Hebert, P., Hudson, N., Ma, J., Howard, T., Fuchs, T., Bajracharya, M., Burdick, J.: Combined shape, appearance and silhouette for simultaneous manipulator and object tracking. In: ICRA, pp. 2405–2412 (2012)

    Google Scholar 

  24. Haralick, R., Joo, H., Lee, C., Zhuang, X., Vaidya, V., Kim, M.: Pose estimation from corresponding point data. IEEE Transactions on Systems, Man and Cybernetics 19(6), 1426–1446 (1989)

    Article  Google Scholar 

  25. Zillich, M., Prankl, J., Mörwald, T., Vincze, M.: Knowing your limits - self-evaluation and prediction in object recognition. In: IROS, pp. 813–820 (2011)

    Google Scholar 

  26. Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3d visual slam with a hand-held camera. In: Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden (2011)

    Google Scholar 

  27. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science Series. Springer (2001)

    Google Scholar 

  28. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR (2012)

    Google Scholar 

  29. Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: IEEE/ACM International Workshop on Augmented Reality (IWAR), pp. 85–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prankl, J., Mörwald, T., Zillich, M., Vincze, M. (2013). Probabilistic Cue Integration for Real-Time Object Pose Tracking. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39402-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39401-0

  • Online ISBN: 978-3-642-39402-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics