Abstract
Robust real time object pose tracking is an essential component for robotic applications as well as for the growing field of augmented reality. Currently available systems are typically either optimized for textured objects or for uniformly colored objects. The proposed approach combines complementary interest points in a common tracking framework which allows to handle a broad variety of objects regardless of their appearance and shape. A thorough evaluation of state of the art interest points shows that a multi scale FAST detector in combination with our own image descriptor outperforms all other combinations. Additionally, we show that a combination of complementary features improves the tracking performance slightly further.
The work described in this article has been funded by the European project under the contract no. 600623, as well as by the Austrian Science Fund under the grant agreements I 513-N23 and TRP 139-N23 and the Austrian Research Promotion Agency under the grant agreement 836490.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
Comparison of Affine-Invariant Local Detectors and Descriptors. In: European Signal Processing Conference (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. IJCV 65(1), 43–72 (2005)
Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. PAMI 32, 105–119 (2010)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10), 761–767 (2004)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). CVIU 110(3), 346–359 (2008)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: ICCV, pp. 2564–2571 (2011)
Mörwald, T., Zillich, M., Prankl, J., Vincze, M.: Self-monitoring to improve robustness of 3D object tracking for robotics. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2830–2837 (2011)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)
Drummond, T., Cipolla, R.: Real-Time Visual Tracking of Complex Structures. PAMI 24(7), 932–946 (2002)
Comport, A.I., Kragic, D., Marchand, E., Chaumette, F.: Robust Real-Time Visual Tracking: Comparison, Theoretical Analysis and Performance Evaluation. In: ICRA (2005)
Babenko, B., Yang, M.H.: Robust Object Tracking with Online Multiple Instance Learning. PAMI 33(8), 1619–1632 (2011)
Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. IJCV 29(1), 5–28 (1998)
Klein, G., Murray, D.: Full-3D Edge Tacking with a Particle Filter. In: BMVC, vol. 3, pp. 1119–1128 (2006)
Cai, Y., de Freitas, N., Little, J.J.: Robust Visual Tracking for Multiple Targets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 107–118. Springer, Heidelberg (2006)
Choi, C., Christensen, H.I.: 3D textureless object detection and tracking: An edge-based approach. In: IROS, pp. 3877–3884 (2012)
Chestnutt, J., Kagami, S., Nishiwaki, K., Kuffner, J., Kanade, T.: GPU-Accelerated Real-Time 3D Tracking for Humanoid Locomotion. In: IROS (2007)
Sánchez, J.R., Álvarez, H., Borro, D.: Towards Real Time 3D Tracking and Reconstruction on a GPU using Monte Carlo Simulations. In: ISMAR, pp. 185–192 (2010)
Masson, L., Jurie, F., Dhome, M.: Contour/texture approach for visual tracking. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 661–668. Springer, Heidelberg (2003)
Vacchetti, L., Lepetit, V., Fua, P.: Combining Edge and Texture Information for Real-Time Accurate 3D Camera Tracking. In: ISMAR (2004)
Kyrki, V., Kragic, D.: Integration of model-based and model-free cues for visual object tracking in 3D. In: ICRA, pp. 1566–1572 (2005)
Pressigout, M., Marchand, E.: Real-time Hybrid Tracking using Edge and Texture Information. IJRR 26(7), 689–713
Hebert, P., Hudson, N., Ma, J., Howard, T., Fuchs, T., Bajracharya, M., Burdick, J.: Combined shape, appearance and silhouette for simultaneous manipulator and object tracking. In: ICRA, pp. 2405–2412 (2012)
Haralick, R., Joo, H., Lee, C., Zhuang, X., Vaidya, V., Kim, M.: Pose estimation from corresponding point data. IEEE Transactions on Systems, Man and Cybernetics 19(6), 1426–1446 (1989)
Zillich, M., Prankl, J., Mörwald, T., Vincze, M.: Knowing your limits - self-evaluation and prediction in object recognition. In: IROS, pp. 813–820 (2011)
Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3d visual slam with a hand-held camera. In: Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden (2011)
Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science Series. Springer (2001)
Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR (2012)
Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: IEEE/ACM International Workshop on Augmented Reality (IWAR), pp. 85–94
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prankl, J., Mörwald, T., Zillich, M., Vincze, M. (2013). Probabilistic Cue Integration for Real-Time Object Pose Tracking. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-39402-7_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39401-0
Online ISBN: 978-3-642-39402-7
eBook Packages: Computer ScienceComputer Science (R0)