Skip to main content

Depth Estimation during Fixational Head Movements in a Humanoid Robot

  • Conference paper
Computer Vision Systems (ICVS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7963))

Included in the following conference series:

  • 3422 Accesses

Abstract

Under natural viewing conditions, humans are not aware of continually performing small head and eye movements in the periods in between voluntary relocations of gaze. It has been recently shown that these fixational head movements provide useful depth information in the form of parallax. Here, we replicate this coordinated head and eye movements in a humanoid robot and describe a method for extracting the resulting depth information. Proprioceptive signals are interpreted by means of a kinematic model of the robot to compute the velocity of the camera. The resulting signal is then optimally integrated with the optic flow to estimate depth in the scene. We present the results of simulations which validate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloimonos, Y., Duric, Z.: Estimating the heading direction using normal flow. International Journal of Computer Vision 13(1), 33–56 (1994)

    Article  Google Scholar 

  2. Ayache, N.: Artificial vision for mobile robots - stereo vision and multisensory perception. MIT Press (1991)

    Google Scholar 

  3. Aytekin, M., Rucci, M.: Motion parallax from microscopic head movements during visual fixation. Vision Research (August 2012)

    Google Scholar 

  4. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  5. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  6. Diankov, R., Kuffner, J.: Openrave: A planning architecture for autonomous robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34 (2008)

    Google Scholar 

  7. Faugeras, O.D., Luong, Q.T., Papadopoulo, T.: The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications. MIT Press (2001)

    Google Scholar 

  8. Higgins, L.H.C., Prazdny, K.: The Interpretation of a Moving Retinal Image. Proceedings of the Royal Society of London. Series B, Biological Sciences (1934-1990) 208(1173), 385–397 (1980)

    Google Scholar 

  9. Kuang, X., Gibson, M., Shi, B.E., Rucci, M.: Active vision during coordinated head/eye movements in a humanoid robot. IEEE Transactions on Robotics PP(99), 1–8 (2012)

    Google Scholar 

  10. Matthies, L., Kanade, T., Szeliski, R.: Kalman filter-based algorithms for estimating depth from image sequences. International Journal of Computer Vision 3(3), 209–238 (1989)

    Article  Google Scholar 

  11. Ramachandran, M., Veeraraghavan, A., Chellappa, R.: A fast bilinear structure from motion algorithm using a video sequence and inertial sensors. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 186–193 (2011)

    Article  Google Scholar 

  12. Rogers, B., Graham, M.: Motion parallax as an independent cue for depth perception. Perception 8(2), 125–134 (1979)

    Article  Google Scholar 

  13. Sandini, G., Tistarelli, M.: Active tracking strategy for monocular depth inference over multiple frames. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 13–27 (1990), doi:10.1109/34.41380

    Article  Google Scholar 

  14. Santini, F., Rucci, M.: Active estimation of distance in a robotic system that replicates human eye movement. Robotics and Autonomous Systems 55(2), 107–121 (2007)

    Article  Google Scholar 

  15. Simoncelli, E., Adelson, E., Heeger, D.: Probability distributions of optical flow. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1991, pp. 310–315. IEEE (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antonelli, M., del Pobil, A.P., Rucci, M. (2013). Depth Estimation during Fixational Head Movements in a Humanoid Robot. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39402-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39401-0

  • Online ISBN: 978-3-642-39402-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics