Skip to main content

OmixAnalyzer – A Web-Based System for Management and Analysis of High-Throughput Omics Data Sets

  • Conference paper
Data Integration in the Life Sciences (DILS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7970))

Included in the following conference series:

Abstract

Current projects in Systems Biology often produce a multitude of different high-throughput data sets that need to be managed, processed, and analyzed in an integrated fashion. In this paper, we present the OmixAnalyzer, a web-based tool for management and analysis of heterogeneous omics data sets. It currently supports gene microarrays, miRNAs, and exon-arrays; support for mass spectrometry-based proteomics is on the way, and further types can easily be added due to its plug-and-play architecture. Distinct from competitor systems, the OmixAnalyzer supports management, analysis, and visualization of data sets; it features a mature system of access rights, handles heterogeneous data sets including metadata, supports various import and export formats, includes pipelines for performing all steps of data analysis from normalization and quality control to differential analysis, clustering and functional enrichment, and it is capable of producing high quality figures and reports. The system builds only on open source software and is available on request as sources or as a ready-to-run software image. An instance of the tool is available for testing at omixanalyzer.informatik.hu-berlin.de.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baranzini, S.E., Mudge, J., van Velkinburgh, J.C., Khankhanian, P., Khrebtukova, I., et al.: Genome, epigenome and rna sequences of monozygotic twins discordant for multiple sclerosis. Nature 464(7293), 1351–1356 (2010)

    Article  Google Scholar 

  2. Battke, F., Symons, S., Nieselt, K.: Mayday – integrative analysis for expression data. BMC Bioinformatics 11, 121 (2011)

    Article  Google Scholar 

  3. Birney, E., Hudson, T.J., Green, E.D., Gunter, C., Eddy, S., et al.: Prepublication data sharing. Nature 461(7261), 168–170 (2009)

    Article  Google Scholar 

  4. Dreher, F., Kreitler, T., Hardt, C., Kamburov, A., Yildirimman, R., et al.: Dipsbc-data integration platform for systems biology collaborations. BMC Bioinformatics 13(1), 85 (2012)

    Article  Google Scholar 

  5. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(8), R86 (2010)

    Google Scholar 

  6. Joosten, M., Seitz, V., Zimmermann, K., Sommerfeld, A., Berg, E., et al.: Histone acetylation and dna demethylation of t-cells result in an anaplastic large cell lymphoma-like phenotype. Haematologica 98(2), 247–254 (2013)

    Article  Google Scholar 

  7. Kallio, M.A., Tuimala, J.T., Hupponen, T., Klemela, P., Gentile, M., et al.: Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics 12, 507 (2011)

    Article  Google Scholar 

  8. Koschmieder, A., Zimmermann, K., Trissl, S., Stoltmann, T., Leser, U.: Tools for managing and analyzing microarray data. Brief. in Bioinf. 13, 46–60 (2012)

    Article  Google Scholar 

  9. Medina, I., Carbonell, J., Pulido, L., Madeira, S., Goetz, S., et al.: Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucl. Acids Res. 38(suppl.) W210–W213 (2010)

    Article  Google Scholar 

  10. Paton, N.W.: Managing and sharing experimental data: standards, tools and pitfalls. Biochem. Soc. Trans. 36(Pt. 1), 33–36 (2008)

    Google Scholar 

  11. Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H., et al.: Vanted v2: a framework for systems biology applications. BMC Syst. Biol. 6(1), 139 (2012)

    Article  Google Scholar 

  12. Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Computational solutions to large-scale data management and analysis. Nat. Rev. Genet. 11(9), 647–657 (2010)

    Article  Google Scholar 

  13. Seitz, V., Thomas, P., Zimmermann, K., Paul, U., Ehlers, A., et al.: Classical hodgkin’s lymphoma shows epigenetic features of abortive plasma cell differentiation. Haematologica 96(6), 863–870 (2011)

    Article  Google Scholar 

  14. Smith, R.N., Aleksic, J., Butano, D., Carr, A., Contrino, S., et al.: Intermine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data 28(23), 3163–3165 (2012)

    Google Scholar 

  15. Wolstencroft, K., Owen, S., du Preez, F., Krebs, O., Mueller, W., et al.: The seek: a platform for sharing data and models in systems biology. Methods in Enzymology 500, 629 (2011)

    Article  Google Scholar 

  16. Wruck, W., Peuker, M., Regenbrecht, C.R.: Data management strategies for multinational large-scale systems biology projects. Brief. in Bioinf. (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stoltmann, T., Zimmermann, K., Koschmieder, A., Leser, U. (2013). OmixAnalyzer – A Web-Based System for Management and Analysis of High-Throughput Omics Data Sets. In: Baker, C.J.O., Butler, G., Jurisica, I. (eds) Data Integration in the Life Sciences. DILS 2013. Lecture Notes in Computer Science(), vol 7970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39437-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39437-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39436-2

  • Online ISBN: 978-3-642-39437-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics