Abstract
Machine learning techniques have been used to classify patterns of neural data obtained from electroencephalography (EEG) to increase human-system performance. This classification approach works well in controlled laboratory settings since many of the machine learning techniques used often rely on consistent neural responses and behavioral performance over time. Moving to more dynamic, unconstrained environments, however, introduces temporal variability in the neural response resulting in sub-optimal classification performance. This study describes a novel classification method that accounts for temporal variability in the neural response to increase classification performance. Specifically, using sliding windows in hierarchical discriminant component analysis (HDCA), we demonstrate a decrease in classification error by over 50% when compared to other state-of-the-art classification methods.
Chapter PDF
Similar content being viewed by others
Keywords
References
Kammer, T., Lehr, L., Kirschfeld, K.: Cortical visual processing is temporally dispersed by luminance in human subjects. Neuroscience Letters 263, 133–136 (1999)
Folstein, J.R., Van Petten, C.: After the P3: Late executive processes in stimulus categorization. Psychophysiology 48, 825–841 (2011)
Craig, A., Tran, Y., Wijesuriya, N., Nguyen, H.: Regional brain wave activity changes associated with fatigue. Psychophysiology 49, 574–582 (2012)
Lal, S.K.L., Craig, A.: Driver fatigue: Electroencephalography and psychological assessment. Psychophysiology 39, 313–321 (2002)
Magliero, A., Bashore, T.R., Coles, M.G.H., Donchin, E.: On the Dependence of P300 Latency on Stimulus Evaluation Processes. Psychophysiology 21, 171–186 (1984)
Dien, J., Spencer, K.M., Donchin, E.: Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology 41, 665–678 (2004)
Gerson, A.D., Parra, L.C., Sajda, P.: Cortically coupled computer vision for rapid image search. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14, 174–179 (2006)
Tomioka, R., Aihara, K., Müller, K.R.: Logistic regression for single trial EEG classification. Advances in Neural Information Processing Systems 19, 1377–1384 (2007)
Parra, L.C., Christoforou, C., Gerson, A.D., Dyrholm, M., Luo, A., Wagner, M., Philiastides, M.G., Sajda, P.: Spatiotemporal Linear Decoding of Brain State. IEEE Signal Processing Magazine 25, 107–115 (2008)
Sajda, P., Pohlmeyer, E., Wang, J., Parra, L.C., Christoforou, C., Dmochowski, J., Hanna, B., Bahlmann, C., Singh, M.K., Chang, S.-F.: In a Blink of an Eye and a Switch of a Transistor: Cortically Coupled Computer Vision. Proceedings of the IEEE 98, 462–478 (2010)
Pohlmeyer, E.A., Wang, J., Jangraw, D.C., Lou, B., Chang, S.-F., Sajda, P.: Closing the loop in cortically-coupled computer vision: a brain–computer interface for searching image databases. Journal of Neural Engineering 8, 036025 (2011)
Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering 8, 441–446 (2000)
Lemm, S., Blankertz, B., Curio, G., Muller, K.-R.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Transactions on Biomedical Engineering 52, 1541–1548 (2005)
Dornhege, G., Blankertz, B., Krauledat, M., Losch, F., Curio, G., Muller, K.-R.: Combined Optimization of Spatial and Temporal Filters for Improving Brain-Computer Interfacing. IEEE Transactions on Biomedical Engineering 53, 2274–2281 (2006)
Tomioka, R., Dornhege, G., Nolte, G., Blankertz, B., Aihara, K., Müller, K.R.: Spectrally weighted common spatial pattern algorithm for single trial EEG classification. Dept. Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech. Rep. 40 (2006)
Wu, W., Gao, X., Hong, B., Gao, S.: Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans. Biomed. Eng. 55, 1733–1743 (2008)
Farquhar, J.: A linear feature space for simultaneous learning of spatio-spectral filters in BCI. Neural Networks 22, 1278–1285 (2009)
Cecotti, H., Rivet, B., Congedo, M., Jutten, C., Bertrand, O., Maby, E., Mattout, J.: A robust sensor-selection method for P300 brain–computer interfaces. Journal of Neural Engineering 8, 016001 (2011)
Touryan, J., Gibson, L., Horne, J.H., Weber, P.: Real-Time Measurement of Face Recognition in Rapid Serial Visual Presentation. Front Psychol. 2 (2011)
Yu, K., Shen, K., Shao, S., Ng, W.C., Kwok, K., Li, X.: Common Spatio-Temporal Pattern for Single-Trial Detection of Event-Related Potential in Rapid Serial Visual Presentation Triage. IEEE Transactions on Biomedical Engineering 58, 2513–2520 (2011)
Yu, K., Shen, K., Shao, S., Ng, W.C., Li, X.: Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage. Journal of Neural Engineering 9, 046013 (2012)
Ries, A.J., Larkin, G.B.: Stimulus and response-locked P3 activity in a dynamic RSVP task. ARL-TR-6314 (2012)
Touryan, J., Gibson, L., Horne, J.H., Weber, P.: Real-time classification of neural signals corresponding to the detection of targets in video imagery. Presented at the International Conference on Applied Human Factors and Ergonomics, Miami, Fl (2010)
Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000)
Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 134, 9–21 (2004)
Luck, S.J., Lopez-Calderon, J.: ERPLAB Toolbox (2010)
Luck, S.J.: An Introduction to the Event-Related Potential Technique. A Bradford Book (2005)
Poli, R., Cinel, C., Citi, L., Sepulveda, F.: Reaction-time binning: A simple method for increasing the resolving power of ERP averages. Psychophysiology 47, 467–485 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marathe, A.R., Ries, A.J., McDowell, K. (2013). A Novel Method for Single-Trial Classification in the Face of Temporal Variability. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Foundations of Augmented Cognition. AC 2013. Lecture Notes in Computer Science(), vol 8027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39454-6_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-39454-6_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39453-9
Online ISBN: 978-3-642-39454-6
eBook Packages: Computer ScienceComputer Science (R0)