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Abstract. Adult neurogenesis is the incorporation of new neurons into
established, functioning neural circuits. Current theoretical work in the
neurogenesis field has suggested that new neurons are of greatest im-
portance in the encoding of new memories, particularly in the ability to
fully capture features which are entirely novel or being experienced in
a unique way. We present two models of neurogenesis (a spiking, bio-
logically realistic model as well as a basic growing feedforward model)
to investigate possible functional implications. We use an information
theoretic computational complexity measure to quantitatively analyze
the information content encoded with and without neurogenesis in our
spiking model. And neural encoding capacity (as a function of neuron
maturation) is examined in our simple feedforward network. Finally, we
discuss potential functional implications for neurogenesis in high risk
environments.

Keywords: Neurogenesis, Dentate Gyrus, Information Theoretic Com-
plexity, Neural Network Modeling.

1 Introduction

Human cognition is facilitated by numerous forms of neuronal plasticity that
span many different scales in both spatial and temporal dimensions. One such
neural process that has received considerable attention over the past decade is
adult neurogenesis, which is the incorporation of new neurons into established,
functioning neural circuits [I]. Neurogenesis is uniquely limited to a few regions
and has been shown to be regulated by a wide range of intrinsic and extrinsic
behavioral conditions. The most studied neurogenic region is the dentate gyrus
(DG) area of the hippocampus, a region known to be critically important for
learning and memory.

Current theoretical work in the neurogenesis field has suggested that new neu-
rons are of greatest importance in the encoding of new memories, particularly
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in the ability to fully capture features which are entirely novel or being experi-
enced in a unique way. This type of memory has the potential to be of critical
importance in high consequence scenarios, in particular in situations where the
decision-maker must base their reasoning on novel, previously unexperienced,
aspects of the environment. Without the capability to properly encode and pro-
cess novel components of an experience, a decision-maker may fall back on the
familiar, which while often a proper strategy, can sometimes be detrimental.

We anticipate that this work can impact cognitive function in two distinct
respects: 1) interventions that increase neurogenesis promise to be an effective
method to improve acute decision making by individuals; and 2) computational
approaches that implement neurogenesis-like plasticity and structural dynamics
can potentially motivate a powerful new form of algorithms that can facilitate
data processing and decision-making assistance in revolutionary ways.

In the following sections we will briefly describe the neurophysiology involved
in neurogenesis and an associated encoding hypothesis, provide a real world high
consequence decision making scenario with potential functional implications,
describe two computational models to investigate neurogenesis, and provide some
results analyzing these models.

2 Neurophysiology

Situated within the medial temporal lobe, the hippocampus is a well studied neu-
ral region that receives an amalgamation of sensory input signals and contributes
significant functional importance such as its key role in episodic memory forma-
tion [2]. The dentate gyrus (DG) serves as an entry region of the hippocampus
receiving sensory stimuli from both lateral and medial entorhinal cortex (EC)
[3]. Although it is comprised of several cell types, granule cells are the most
populous neuron types within the DG. The DG is a relatively large region (con-
sisting of approximately 10 to 20 million neurons in humans), however it exhibits
sparse activation meaning that only approximately 2 percent of these neurons
are active at a given instance [4]. DG activity subsequently serves as input to
the highly recurrent cornu ammonis 3 (CA3) region of hippocampus for further
processing.

The sparse activation of the DG has often been attributed to a pattern separa-
tion functionality within DG [B]. From this perspective, the relatively few neurons
firing despite the large size of DG corresponds to a unique non-overlapping encod-
ing of the multi-modal sensory inputs from EC. Alternatively, another proposed
role for DG is to control memory resolution [6]. From this perspective, young im-
mature neurons are hyperexcitable and broadly respond to a wide variety of input
stimulation. Mature neurons, on the other hand, are narrowly tuned to respond to
specific inputs they have learned to selectively fire to. The integration of both ma-
ture and young neurons within the same neural network allows for a mixed coding
hypothesis. From this perspective, the young, easily excitable neurons are integral
for incorporating new memories within a neural network without interfering with
existing encodings represented by the mature neurons.
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3 Real World Scenario

As a real world example of a high consequence decision-making scenario with
potential implications for neurogenesis, consider the role of the drone operator.
Rather than piloting their aircraft internally from the confines of a cockpit,
as conventional pilots do, drone pilots remotely operate their aircraft from a
distant workstation with real time video feeds projected on computer screens.
Some drones are equipped with weapons and are consequently able to take action
if a hostile target is detected.

However, the majority of a drone operator’s time is spent watching and survey-
ing. According to Massachusetts Institute of Technology (MIT) aeronautics and
astronautics professor Mary Cummings, “You might park a UAV over a house,
waiting for someone to come in or come out, and thats where the boredom comes
in” [7]. Despite the similar environment to that of a video game, a drone op-
erator’s shift is typically less action intensive. Instead, “...it is not uncommon
in search and reconnaissance missions for a UAV pilot to spend the majority of
the mission waiting for a system anomaly to occur, with only occasional system
interactions” [§].

It is of crucial importance that this rare, anomalous event consisting of a
target of interest appearing in what is an otherwise highly familiar environment
does not go undetected. It is possible that highly active young neurons may
facilitate the ability to encode and perceive this novel, but significant event.

4 Computational Models

To investigate the possible functional significance of neurogenesis we have devel-
oped two neural network models. The first is a large scale, biologically realistic,
spiking neural network model. The second is a simple rate-coded feedforward
network that grows new neurons and connections. In the following we will de-
scribe the two networks in greater detail.

4.1 Spiking Dynamics Model

We have developed a biologically motivated, spiking model comprised of nine cell
types representing EC inputs as well the molecular layer, granule cell layer, and
hilus of DG. The underlying neuron model we have implemented uses Izhikevich
neural dynamics so that we can fit to actual electrophysiology data from mature
and immature granule cells and hilar interneurons [9]. We have also incorpo-
rated biologically realistic ratios of neurons within the model. Particularly, we
have experimented with a model consisting of 5,500 EC neurons and 50,000 DG
granule cells. The EC neurons are split between lateral and medial EC providing
object cell and grid cell inputs respectively.

The particular input firings are driven by a multi-context multi-day simulated
experimental paradigm. In a single simulation day, the model is presented three
different contexts consisting of a variety of items in various locations. Over the
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course of multiple simulation days, the first context is the same every day and
is repeatedly presented to the model as a very familiar input. The second input
presented each day is familiar context that the model has been presented before,
but not as frequently as the first very familiar input. And finally, the third input
presented each day is a novel, formerly unseen input (although it may consist of
some formerly seen items in new locations and paired with different combinations
of items). This experimental paradigm allows the model to investigate both
acute and long term effects of neurogenesis while varying neurogenesis rates in
a controlled manner.

4.2 Basic Neurogenesis Model

Additionally, to investigate fundamental neurogenesis functionality, such as the
mixed coding hypothesis, we have also implemented a basic feedforward model
which relaxes biological realism. This simplistic model consists of two layers of
neurons. A fixed size input layer representing the EC, and a growing layer of
DG granule cells.

The EC layer consists of both excitatory and inhibitory inputs, with four
times as many excitatory as inhibitory inputs. Both the excitatory and inhibitory
neurons exhibit a twenty percent activation each timestep. Over time, the DG
layer grows both by incorporating new neurons as well as adding additional
synapses (both excitatory and inhibitory) to the existing neurons as they mature.
Just as there are more excitatory inputs than inhibitory, there are likewise more
synapses to excitatory inputs than inhibitory. However, the inhibitory synapses
have a stronger effect than the excitatory synapses. Throughout the neurogenesis
network growth process, these ratios are preserved.

As a simplistic model of neural behavior, DG neurons fire if for a given
timestep, input excitation exceeds input inhibition. This basic behavior is subse-
quently regulated by Hebbian learning such that if an input causes a DG neuron
to fire, its synapses are updated accordingly.

Over time, new neurons are added to the DG layer. Each of these new neurons
is randomly connected to the EC inputs, with a baseline amount of synapses.
Additionally, over time, all neurons incorporate new synapses until they reach
full maturity which happens when synaptic connections to the EC inputs reach
twenty percent (of all available EC inputs). Throughout this temporal matura-
tion process, a set of EC inputs are cycled through. Rather than exposing all
of the inputs to the full input set, instead subsets of the inputs are presented
during certain time windows.

For a more detailed description of this model please see [10].

5 Results

To quantitatively assess the potential benefits to neurogenesis we have analyzed
computational complexity as an estimation of information representation from
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an information theoretic standpoint as well as examined neuronal encoding rates.
The results of these analyses for our two computational models are presented
next.

5.1 Computational Complexity of the Spiking Dynamics Model

To analyze the encoding capability of our spiking dynamics model we looked at
the computational complexity of the granule cell neural ensemble over the course
of the presentation of a particular context. Shannon entropy is a fundamental
approach to quantize the amount of information in a variety of sources such as
communication channels [IT]. Additionally, many approaches have been devised
to apply this sort of information measure to neurons [12]. However, doing so
requires knowledge of the firing behavior probability distribution for the neurons
within the model.

Rather, in lieu of estimating neuron firing probabilities, we have used com-
plexity as a measure of compressibility in order to estimate entropy to quantita-
tively assess the information content of a signal. Szczepanski et al. applied the
general Lempel-Ziv complexity (LZ-Complexity) measure to estimate entropy
of real and simulated neurons [I3]. But unlike the work of Szczepanski et al.,
rather than applying LZ-Complexity analysis to individual neuron spike trains,
we have applied the approach to a neural population as a whole. LZ-Complexity
is based upon measuring the rate of generation of new patterns along a sequence
of characters in a string being compressed [14]. Applied to neuron spike trains,
this technique looks for repeated spiking behavior over time. Instead, by apply-
ing it across an entire neural ensemble, we assessed repeated patterns of neural
co-activity. Synaptic modifications alter the firing behavior of the neural network
through learning. In order to account for this plasticity of the network, rather
than computing the ensemble complexity at each timestep, we concatenated all
of the firing outputs of the entire neural ensemble (while presented a single input
context) into a long spike signal. This approach is depicted in Fig. [

Once the spike signal is converted into a binary signal, where an action po-
tential is encoded as a one and the absence of activity by a zero, the normalized
complexity may then be computed as follows:

cafa) = )

Normalized complexity measures the generation rate of new patterns along a
word of length n with letters from an alphabet of size a (in this case two).
Additionally, it can be proven [11] that as the string length (our series of neural
firings in this case) goes to infinity, the supremum of the normalized complexity
approaches the entropy of the signal S:

x logan. (1)

limsup cq (™) < Ho(5). (2)

n—oo

We have implemented two instantiations of a biologically inspired spiking neural
model, each consisting of 50,000 granule cells. The difference between these two
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Fig. 1. Concatenation of neural firings across the population ensemble to generate a
binary spike signal preserving temporal synchrony.

models is that the first does not implement neurogenesis while the second has
a ten percent neurogenesis rate. Both models were exposed to three contexts
across different simulated days as described formerly in the model description.
Fig. [ depicts the normalized complexity values for these two models across
seven days of contexts (with the three numbers corresponding to normalized
complexity for each of the three contexts, respectively). As evident by Fig. [2,
the neural network with neurogenesis exhibits a distinct increase in information
content, quantitatively inferred by means of normalized complexity, compared
to the network with no neurogenesis across all days and contexts.

No NG  0.000003
0.000003
0.000003

10%NG 0.000032
0.000031
0.000031

Day 2

0.000002
0.000002
0.000003

0.000033
0.000035
0.000033

Day3

0.000002
0.000002
0.000002

0.000861
0.000618
0.000747

Day 4

0.000002
0.000002
0.000003

0.000898
0.000846
0.000748

Day5

0.000002
0.000002
0.000002

0.000789
0.000872
0.000824

Day6

0.000002
0.000003
0.000002

0.001201
0.000458
0.000676

Day7

0.000002
0.000002
0.000002

0.001298
0.001250
0.001050

Fig. 2. Normalized Complexity values for 50,000 granule cell network with zero and
ten percent neurogenesis over seven days of varied contexts
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5.2 Basic Neurogenesis Model

In evaluating our basic neurogenesis model, we experimented with an EC size
of 12,500 neurons (10,000 excitatory and 2,500 inhibitory inputs). The EC layer
itself had no input, however the patterns of activity we specified for it at a
given timestep served as the inputs for the DG layer. The EC does not receive
direct sensory input, but rather receives signals which have been pre-processed,
such as by the visual cortex. Alternatively, specific input patterns such as visual
images could be applied as inputs to the model if an appropriate neural sensory
processing function (such as a hashing function) were used to process the raw
input. Such a framework is illustrated in Fig. Bl where we have currently only
implemented the portion to the right of the human comprehensible images in
the figure, with binary EC activation patterns and a growing network of DG
neurons.

Fig. 3. General framework of a basic neurogenesis model proceeding from input im-
ages to an entorhinal cortex distributed representation and subsequent processing by
a growing dentate gyrus network

In our analysis, we varied the maximum allowed growth in the DG layer to
investigate network plasticity as well as learn-ability. In all cases, the younger
immature neurons proved to be more excitable and responsive to a greater num-
ber of inputs despite having fewer connections than the more mature neurons.
And likewise, the older neurons, through maturation, became narrowly tuned
and responsive to specific input stimuli. This behavior is evident in Fig. @l where
the horizontal axis delineates the particular neurons by maturation age and the
vertical axis represents the number of inputs each neuron responds to. The neu-
rons in the figure are ordered by when they were added to the network, so the
older (more mature) neurons which were added first are on the left and the
younger more recently added neurons are on the right. To account for variability
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Number of Inputs Responded To

Mature Neurons Young Neurons

Fig. 4. Number of input patterns each neuron responds to. Moving from left to right
represents the ordering in which new neurons were added to the network such that the

rightmost neurons are the youngest neurons.

in the random synaptic connectivity, the number of inputs the neurons respond
to are averaged over 1000 simulation runs of the model.

Furthermore, informal evaluations have also shown that given a sufficient neu-
rogenesis rate in conjunction with an adequately sized DG proved to be sufficient
to encode all inputs. This characteristic is important for network stability such
that as neurons within the network mature and become tightly tuned to specific
inputs that prior information is not lost in exchange for the novel stimuli. In this
sense, the mature neurons are selectively responsive to narrowly tuned inputs
but do not respond to novel stimuli. We evaluated this functionality by turning
off Hebbian learning and re-showing the network the formerly seen inputs as
well as a set of novel inputs. The mature neurons only responded to their select
inputs while the younger neurons were responsive to novel stimuli as well as the

formerly seen inputs.

6 Conclusions

Through neurogenesis, it appears that the incorporation of new cells within
a neural circuit may be a means to increase the information content of the
network as well as provide a means to encode novel stimuli. New neurons, which
are highly excitable, have an increased likelihood of encoding current stimuli.
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Consequently, as they mature they become more tightly tuned to particular
inputs being learned and are not as easily able to incorporate the novel stimuli
into the network without neurogenesis. Such a phenomena may play a crucial role
in high consequence decision making scenarios such as that of a drone operator.
On a surveillance mission, the majority of the images a drone operator sees
may be routine and familiar if they have surveyed the same area previously.
The scenario may be entirely familiar if nothing has changed regarding the area
under consideration. Or it may be a highly familiar scene in which all of the
usual components are there but a suspect’s vehicle is parked on the other side
of the house for example. However, it is of utmost importance in this domain
to be cognizant of the subtle change in which a key target appears in what
was an otherwise routine surveillance so the situation can be properly assessed
and the appropriate action taken. A better understanding of the neurogenesis
phenomena and its functional implications may allow for this capability to be
increased, or alternatively incorporated within computational tools as an aid
leading to improved human performance.

While the potential benefits adult neurogenesis may provide are exciting, its
functional implications are still far from understood. As future work, we plan to
investigate the effects of varying neurogensis rates, examine whether the matura-
tion rate has any effect on learnability or stability, study strategies for synaptic
growth/formation, and consider neuronal death as a contrasting balance to neu-
rogenesis. Additionally, we also plan to investigate possible application areas
which may benefit from neurogensis like mechanisms such as memory manage-
ment, computational encoding schemes, and dynamic decision making.
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