Skip to main content

A Novel Image Retrieval Method Based on Mutual Information Descriptors

  • Conference paper
Intelligent Computing Theories and Technology (ICIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7996))

Included in the following conference series:

  • 3187 Accesses

Abstract

In this paper, we propose a novel image retrieval method based on mutual information descriptors (MIDs). Under the physiological property of human eyes and human visual perception theory, MIDs are extracted to encode the internal correlation relationship among multiple image feature spaces, characterizing image contents with mutual information features based on the low-level image features, such as color, shape etc., then, the mutual information features fusion strategy is used to imitate the information transfer process in nervous system. When using the MIDs proposed to image retrieval, we can get many advantages such as low dimensionality, a certain robustness of geometric distortions and noise, and describing the human visual retrieval mechanism effectively. Experimental results show that MIDs have high indexing and retrieving performance compared with existing methods for content-based image retrieval (CBIR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fua, H., Chia, Z., Feng, D.: Attention-driven image interpretation with application to image retrieval. Pattern Recognition 39, 1604–1621 (2006)

    Article  Google Scholar 

  2. Treisman, A.: A feature in integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)

    Article  MathSciNet  Google Scholar 

  3. Theeuwes, J.: Visual selective attention: a theoretical analysis. Acta Psychologica 83, 93–154 (1993)

    Article  Google Scholar 

  4. Steinman, S., Steinman, B.: Computational models of visual attention. In: Hung, G.K., Ciuffreda, K.J. (eds.) Models of the Visual System, ch. 14, pp. 521–563 (2002)

    Google Scholar 

  5. Wolfe, J.: The level of attention: mediating between the stimulus and perception. In: Harris, L., Jenkin, M. (eds.) Levels of Perception, ch. 9, pp. 169–191 (2002)

    Google Scholar 

  6. Joseph, J., Chun, M., Nakayama, K.: Attentional requirements in a ‘preattentive’ feature search task. Nature 387, 805–807 (1997)

    Article  Google Scholar 

  7. Niebur, E., Koch, C.: Computational architectures for attention. In: Parasuraman, R. (ed.) The Attention Brain. MIT Press, Cambridge (1998)

    Google Scholar 

  8. Liu, G.H., Li, Z.Y., Zhang, L., Xu, Y.: Image retrieval based on micro-structure descriptor. Pattern Recognition 44, 2123–2133 (2011)

    Article  Google Scholar 

  9. Julesz, B.: Textons, the elements of texture perception and their interactions. Nature 290(5802), 91–97 (1981)

    Article  Google Scholar 

  10. Burger, W., Burge, M.J.: Principles of Digital image processing: Core Algorithms. Springer (2009)

    Google Scholar 

  11. Müller, H., Müller, W., Squire, D.G., Maillet, S.M., Pun, T.: Performance evaluation in content-based image retrieval: over view and proposals. Pattern Recognition Letter 22(5), 593–601 (2001)

    Article  MATH  Google Scholar 

  12. Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1(1-2), 69–90 (1999)

    Article  Google Scholar 

  13. Yoon, S.J.: Image retrieval using a novel relevance feedback for edge histogram descriptor of MPEG-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hou, G., Zhang, K., Zhang, X., Kong, J., Zhang, M. (2013). A Novel Image Retrieval Method Based on Mutual Information Descriptors. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39482-9_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39481-2

  • Online ISBN: 978-3-642-39482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics