Skip to main content

Palmprint Recognition Method Based on a New Kernel Sparse Representation Method

  • Conference paper
Intelligent Computing Theories and Technology (ICIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7996))

Included in the following conference series:

  • 3038 Accesses

Abstract

To capture the nonlinear similarity of palmprint image features, a new palmprint recognition method utilizing the kernel trick based sparse representation (KSR) algorithm is proposed in this paper. KSR is in fact an essential sparse coding technique in a high dimensional feature space mapped by implicit mapping function, and it can efficiently reduce the feature quantization error and enhance the sparse coding performance. Here, to reduce the time of sparse coding, the fast sparse coding (FSC) is used in coding stage. FSC solves the L 1 - regularized least squares problem and the L 2 -constrained least squares problem by iterative method, and it has a faster convergence speed than the existing SC model. In test, the PolyU palmprint database used widely in palmprint recognition research is selected. Using the Gauss kernel function and considering different feature dimensions, the task of palmprint recognition obtained by KSR can be successfully implemented. Furthermore, compared our method with general SR and SC under different feature dimensions, the simulation results show further that this method proposed by us is indeed efficient in application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Transcations on Circuits and Systems for Video Technology 14(1), 4–40 (2004)

    Article  Google Scholar 

  2. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  3. Connle, T., Jin, A.T.B., Ong, M.G.K., et al.: An automated palmprint recognition system. Image and vision computing 23(5), 501–515 (2005)

    Article  Google Scholar 

  4. Ghandehari, A., Safabakhsh, R.: Palmprint Verification Using Circular Gabor Filter. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 675–684. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Kong, W.K., Zhang, D., Li, W.: Palmprint recognition using eigenpalm features. Pattern Recognition Letters 24(9), 1473–1477 (2003)

    Google Scholar 

  6. Strang, G., Nguyen, T.: Wavelet and Filter Banks. Wellesley-Cambridge Press (1997)

    Google Scholar 

  7. Li, W.-X., Zhang, D., Xu, Z.-Q., et al.: Palmprint identification by fourier transform. International Journal of Pattern Recognition and Artificial Intelligence 16(4), 417–432 (2002)

    Article  Google Scholar 

  8. Han, X., Xu, J.-J.: Palmprint recognition based on support vector machine of combination kernel function. In: The 2nd International Conference on Information Science and Engineering (ICISE), December 15-16, pp. 6748–6751. IEEE Press, Kyiv Ukraine (2010)

    Google Scholar 

  9. Yu, P.-F., Xu, D.: Palmprint recognition bsed on modified DCT features and RBF neural network. In: nternational Conference on Machine Learning and Cybernetics, Suntec Singapore, October 12-15, vol. 5, pp. 2982–2986. IEEE Press (2008)

    Google Scholar 

  10. Shang, L., Huang, D.-S., Du, J.-X., et al.: Palmprint recogniton using FastICA algorithm and radial basis probabilistic neural network. Neurocomputing 69(13), 1782–1786 (2006)

    Article  Google Scholar 

  11. Hyvärinen, A.: Independent component analysis in the presence of gaussian noise by maximizing joint likelihood. Neurocomputing 22, 49–67 (1998)

    Article  MATH  Google Scholar 

  12. Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13, 411–430 (2000)

    Article  Google Scholar 

  13. Shang, L.: Image reconstruction using a modified sparse coding technique. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 220–226. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Wang, Q.-X., Cao, C.-H., Li, M.-H., et al.: A new model based on grey theory and neural network algorithm for evaluation of AIDS clinical trial. Advances in Computational Mathematics and Its Applications 2(3), 292–297 (2013)

    Google Scholar 

  15. Pu, J., Zhang, J.-P.: Super-Resolution through dictionary learning and sparse representation. Pattern Recognition and Artificial Intelligence 23(3), 335–340 (2010)

    Google Scholar 

  16. Jun, Y., Zhonghua, L., Zhong, J., et al.: Kernel Sparse Repre-sentation Based Classification. Neurocomputing 77(1), 120–128 (2012)

    Article  Google Scholar 

  17. Gao, S.-H., Tsang, I.W.-H., Chia, L.-T., et al.: Kernel sparse representation for image classification and face recognition

    Google Scholar 

  18. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Zu, H.-L., Wang, Q.-X., Dong, M.-Z., et al.: Compressed sensing based fixed point DCT image encoding. Advances in Computational Mathematics and Its Applications 2(2), 259–262 (2012)

    Google Scholar 

  20. Ekinci, M.: Palmprint recognition using kernel PCA of Gabor features. In: The 23rd International Symposium on Computer and Information Sciences (ISCIS 2008), Istanbul, Turkey, October 27-29, pp. 27–29. IEEE Press (2008)

    Google Scholar 

  21. Connie, T., Teoh, A., Goh, M., et al.: Palmprint recognition with PCA and ICA. Image and Vision Computing NZ 3, 227–232 (2003)

    Google Scholar 

  22. Aharon, M., Elad, M., Bruckstein, A., et al.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shang, L. (2013). Palmprint Recognition Method Based on a New Kernel Sparse Representation Method. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39482-9_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39481-2

  • Online ISBN: 978-3-642-39482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics