Abstract
In this paper, we propose to evaluate the performance of a discriminative model to semantically label spoken Tunisian dialect turns which are not segmented into utterances. We evaluate discriminative algorithm based on Conditional Random Fields (CRF). We check the performance of the CRF model to concept labeling on raw data in Tunisian dialect which are not analyzed in advance. We compared its performance with different types of preprocessing data until arriving to well treated data. CRF model showed the ability to ameliorate the accuracy of labeling task for spoken language understanding of not segmented and not treated speech in Tunisian dialect.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aust, H., Oerder, M., Seide, F., Steinbiss, V.: The Philips automatic train timetable information system. Speech Communication 17, 249–263 (1995)
Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken language understanding. In: Proceedings of Interspeech, Antwerp, Belgium (2007)
Sha, F., Pereira, F.: Shallow parsing with Conditional random fields. In: Proceedings of HLT-NAACL, pp. 134–141 (2003)
MartÃnez-Hinarejos, C.D., BenedÃ, J.M., Granell, R.: Statistical framework for a Spanish spoken dialogue corpus. Speech Communication (2008)
Zouaghi, A., Zrigui, M., Ben Ahmed, M.: Évaluation des performances d’un modèle de langage stochastique pour la compréhension de la parole arabe spontanée. TALN (2007)
Bahou, Y., Hadrich Belguith, L., Ben Hamadou, A.: Towards a Human-Machine Spoken Dialogue in Arabic. In: LREC (2008)
Graja, M., Jaoua, M., Hadrich Belguith, L.: Lexical Study of A Spoken Dialogue Corpus in Tunisian Dialect. In: The International Arab Conference on Information Technology (ACIT), Benghazi – Libya (2010)
Diab, M., Habash, N.: Arabic Dialect Processing Tutorial. In: Proceedings of the Human Language Technology Conference of the North American, Rochester (2007)
Khalfaoui, A.: A cognitive approach to analyzing demonstratives in Tunisian Arabic. In PhD thesis of university of Minnesota (November 2009)
Habash, N., Diab, M., Rambow, O.: Conventional Orthography for Dialectal Arabic. In: Proceedings of the Language Resources and Evaluation Conference (LREC), Istanbul (2012)
Zbib, R., Malchiodi, E., Devlin, J., Stallard, D., Matsoukas, S., Schwartz, R., Makhoul, J., Zaidany, O.F., Callison-Burch, C.: Machine Translation of Arabic Dialects. In: HLT-NAACL, pp. 49–59 (2012)
Clavier, V., Lallich-Boidin, G.: Modélisation linguistique de la suffixation en vue de l’analyse automatique. Traitement Automatique des Langues 35(2), 129–144 (1994)
Minker, W.: Stochastic versus rule-based speech understanding for information retrieval. Speech Communication, 223–247 (1998)
Wang, Y.-Y., Acero, A.: Discriminative models for spoken language understanding. In: ICSLP (2006)
Wang, Y., Acero, A., Mahajan, M., Lee, J.: Combining statistical and knowledge-based spoken language understanding in conditional models. In: Proceeding COLING/ACL, Sydney, Australia (2006)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning (ICML), pp. 282–289 (2001)
Kudo, T.: crf++, http://chasen.org/~taku/software/CRF++/
Graja, M., Jaoua, M., Belguith, L.H.: Towards Understanding Spoken Tunisian Dialect. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part III. LNCS, vol. 7064, pp. 131–138. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Graja, M., Jaoua, M., Belguith, L.H. (2013). Discriminative Framework for Spoken Tunisian Dialect Understanding. In: Dediu, AH., MartÃn-Vide, C., Mitkov, R., Truthe, B. (eds) Statistical Language and Speech Processing. SLSP 2013. Lecture Notes in Computer Science(), vol 7978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39593-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-39593-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39592-5
Online ISBN: 978-3-642-39593-2
eBook Packages: Computer ScienceComputer Science (R0)