Skip to main content

Discriminative Framework for Spoken Tunisian Dialect Understanding

  • Conference paper
Statistical Language and Speech Processing (SLSP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7978))

Included in the following conference series:

  • 2749 Accesses

Abstract

In this paper, we propose to evaluate the performance of a discriminative model to semantically label spoken Tunisian dialect turns which are not segmented into utterances. We evaluate discriminative algorithm based on Conditional Random Fields (CRF). We check the performance of the CRF model to concept labeling on raw data in Tunisian dialect which are not analyzed in advance. We compared its performance with different types of preprocessing data until arriving to well treated data. CRF model showed the ability to ameliorate the accuracy of labeling task for spoken language understanding of not segmented and not treated speech in Tunisian dialect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aust, H., Oerder, M., Seide, F., Steinbiss, V.: The Philips automatic train timetable information system. Speech Communication 17, 249–263 (1995)

    Article  Google Scholar 

  2. Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken language understanding. In: Proceedings of Interspeech, Antwerp, Belgium (2007)

    Google Scholar 

  3. Sha, F., Pereira, F.: Shallow parsing with Conditional random fields. In: Proceedings of HLT-NAACL, pp. 134–141 (2003)

    Google Scholar 

  4. Martínez-Hinarejos, C.D., Benedí, J.M., Granell, R.: Statistical framework for a Spanish spoken dialogue corpus. Speech Communication (2008)

    Google Scholar 

  5. Zouaghi, A., Zrigui, M., Ben Ahmed, M.: Évaluation des performances d’un modèle de langage stochastique pour la compréhension de la parole arabe spontanée. TALN (2007)

    Google Scholar 

  6. Bahou, Y., Hadrich Belguith, L., Ben Hamadou, A.: Towards a Human-Machine Spoken Dialogue in Arabic. In: LREC (2008)

    Google Scholar 

  7. Graja, M., Jaoua, M., Hadrich Belguith, L.: Lexical Study of A Spoken Dialogue Corpus in Tunisian Dialect. In: The International Arab Conference on Information Technology (ACIT), Benghazi – Libya (2010)

    Google Scholar 

  8. Diab, M., Habash, N.: Arabic Dialect Processing Tutorial. In: Proceedings of the Human Language Technology Conference of the North American, Rochester (2007)

    Google Scholar 

  9. Khalfaoui, A.: A cognitive approach to analyzing demonstratives in Tunisian Arabic. In PhD thesis of university of Minnesota (November 2009)

    Google Scholar 

  10. Habash, N., Diab, M., Rambow, O.: Conventional Orthography for Dialectal Arabic. In: Proceedings of the Language Resources and Evaluation Conference (LREC), Istanbul (2012)

    Google Scholar 

  11. Zbib, R., Malchiodi, E., Devlin, J., Stallard, D., Matsoukas, S., Schwartz, R., Makhoul, J., Zaidany, O.F., Callison-Burch, C.: Machine Translation of Arabic Dialects. In: HLT-NAACL, pp. 49–59 (2012)

    Google Scholar 

  12. Clavier, V., Lallich-Boidin, G.: Modélisation linguistique de la suffixation en vue de l’analyse automatique. Traitement Automatique des Langues 35(2), 129–144 (1994)

    Google Scholar 

  13. Minker, W.: Stochastic versus rule-based speech understanding for information retrieval. Speech Communication, 223–247 (1998)

    Google Scholar 

  14. Wang, Y.-Y., Acero, A.: Discriminative models for spoken language understanding. In: ICSLP (2006)

    Google Scholar 

  15. Wang, Y., Acero, A., Mahajan, M., Lee, J.: Combining statistical and knowledge-based spoken language understanding in conditional models. In: Proceeding COLING/ACL, Sydney, Australia (2006)

    Google Scholar 

  16. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning (ICML), pp. 282–289 (2001)

    Google Scholar 

  17. Kudo, T.: crf++, http://chasen.org/~taku/software/CRF++/

  18. Graja, M., Jaoua, M., Belguith, L.H.: Towards Understanding Spoken Tunisian Dialect. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part III. LNCS, vol. 7064, pp. 131–138. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graja, M., Jaoua, M., Belguith, L.H. (2013). Discriminative Framework for Spoken Tunisian Dialect Understanding. In: Dediu, AH., Martín-Vide, C., Mitkov, R., Truthe, B. (eds) Statistical Language and Speech Processing. SLSP 2013. Lecture Notes in Computer Science(), vol 7978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39593-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39593-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39592-5

  • Online ISBN: 978-3-642-39593-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics