Skip to main content

Efficient Implementation of Bayesian Hierarchical Model to Study Space Time Variability of Latent Heat Flux

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7974))

Included in the following conference series:

  • 2209 Accesses

Abstract

This paper describes an efficient implementation of Bayesian hierarchical model for space time variability of latent heat flux. Model parameters are estimated using Gibbs sampler. Many computations in the Gibbs sampling scheme are time intensive. Some time intensive computations in the model are matrix operations such as matrix multiplication, matrix inverse, matrix LU decomposition. We have used graphical processing unit (GPU) to run time intensive matrix operations. Some time intensive operations are transformed to matrix operations to take advantage of GPU. To run the model in GPU model is implemented in Compute Unified Device Architecture (CUDA). Two GPUs are used to run the model one is NVIDIA Graphics card Tesla C2075 with 448 cores and other is NVIDIA Graphics card GT 520 with 48 cores. To study the gain in speedup on the GPU we have implemented the model using single threaded C to run on CPU. A comparative study of implementation on CPU and the two GPUs is carried out for 100 iterations of the Gibbs sampler. We found 30-130 fold speedup on Tesla GPU as compared to single threaded CPU code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berliner, L.M.: Hierarchical Bayesian time-series models. Fundamental Theories of Physics 79, 15–22 (1996)

    MathSciNet  Google Scholar 

  2. Cocchi, D., Greco, F., Trivisano, C.: Hierarchical space-time modelling of pm10 pollution. Atmospheric Environment 41, 532–542 (2007)

    Article  Google Scholar 

  3. Friedrichs, M.S., Eastman, P., Vaidyanathan, V., Houston, M., Legrand, S., Beberg, A.L., Ensign, D.L., Bruns, C.M., Pande, V.S.: Accelerating molecular dynamic simulation on graphics processing units. Journal of Computational Chemistry 30, 864–872 (2009)

    Article  Google Scholar 

  4. Gamerman, D., Lopes, H.F.: Markov chain Monte Carlo: stochastic simulation for Bayesian inference 68. Chapman & Hall/CRC (2006)

    Google Scholar 

  5. Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398–409 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gelman, A., Rubin, D.B.: A single series from the gibbs sampler provides a false sense of security. Bayesian Statistics 4, 625–631 (1992)

    Google Scholar 

  7. Geyer, C.J.: Practical markov chain monte carlo. Statistical Science 7, 473–483 (1992)

    Article  Google Scholar 

  8. Lee, A., Yau, C., Giles, M.B., Doucet, A., Holmes, C.C.: On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Journal of Computational and Graphical Statistics 19, 769–789 (2010)

    Article  Google Scholar 

  9. Natvig, B., Tvete, I.: Bayesian hierarchical space–time modeling of earthquake data. Methodology and Computing in Applied Probability 9, 89–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Raftery, A.E., Lewis, S., et al.: How many iterations in the gibbs sampler. Bayesian Statistics 4, 763–773 (1992)

    Google Scholar 

  11. Sahu, S.: Hierarchical bayesian models for space-time air pollution data. In: Handbook of Statistics-Time Series Analysis, Methods and Applications: Handbook of Statistics, vol. 30 (2011)

    Google Scholar 

  12. Sahu, S.K., Challenor, P.: A space-time model for joint modeling of ocean temperature and salinity levels as measured by argo floats (October 2007)

    Google Scholar 

  13. Pinedo, J.S., et al.: Matrix inversion speed up with cuda (2011)

    Google Scholar 

  14. Suchard, M.A., Wang, Q., Chan, C., Frelinger, J., Cron, A., West, M.: Understanding gpu programming for statistical computation. Studies in massively parallel massive mixtures. Journal of Computational and Graphical Statistics 19, 419–438 (2010)

    Article  MathSciNet  Google Scholar 

  15. Suchard, M.A., Rambaut, A.: Many-core algorithms for statistical phylogenetics. Bioinformatics 25, 1370–1376 (2009)

    Article  Google Scholar 

  16. Vanem, E., Huseby, A., Natvig, B.: Modelling ocean wave climate with a bayesian hierarchical space–time model and a log-transform of the data. Ocean Dynamics 62, 355–375 (2012)

    Article  Google Scholar 

  17. Wikle, C.K., Berliner, L.M., Cressie, N.: Hierarchical bayesian space-time models. Environmental and Ecological Statistics 5, 117–154 (1998)

    Article  Google Scholar 

  18. Wikle, C.K., Milliff, R.F., Nychka, D., Berliner, L.M.: Spatiotemporal hierarchical bayesian modeling. Tropical ocean surface winds. Journal of the American Statistical Association 96, 382–397 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, M.K., Venkatachalam, P. (2013). Efficient Implementation of Bayesian Hierarchical Model to Study Space Time Variability of Latent Heat Flux. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39649-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39649-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39648-9

  • Online ISBN: 978-3-642-39649-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics