Skip to main content

Fast Wavelet Transform Based on Spiking Neural Network for Visual Images

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 375))

Included in the following conference series:

  • 1631 Accesses

Abstract

The functionalities of spiking neurons can be applied to deal with biological stimuli and explain complicated intelligent behaviorsof the brain. Wavelet transform is a powerful time-frequency analysis tool that can efficiently compress image and extract image features. In this article, a spiking neural network combined with the ON/OFF neuron arrays associated with the human visual system is proposed to perform the fast wavelet transform for visual images. The simulation results show that the spiking neural network can preserve the key features of visual images very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 117(4), 500–544 (1952)

    Google Scholar 

  2. Muller, E.: Simulation of High-Conductance States in Cortical Neural Networks. Masters thesis. University of Heidelberg. HDKIP-03-22 (2003)

    Google Scholar 

  3. Masland, R.H.: The fundamental plan of the retina. Nature Neuroscience 4(9), 877–886 (2001)

    Article  Google Scholar 

  4. Taylor, W.R., Vaney, D.I.: New directions in retinal research. Trends in Neurosciences 26(7), 379–385 (2003)

    Article  Google Scholar 

  5. Kandel, E.R., Shwartz, J.H.: Principles of Neural Science. Edward Amold (Publishers) Ltd. (1981)

    Google Scholar 

  6. Demb, J.B.: Cellular mechanisms for direction selectivity in the retina. Neuron. 55(2), 179–186 (2007)

    Article  Google Scholar 

  7. Nelson, R., Kolb, H.: On and Off Pathways in the Vertebrate Retina and Visual System. MIT Press, Cambridge (2003)

    Google Scholar 

  8. Wu, Q.X., McGinnity, T.M., Maguire, L., Ghani, A., Condell, J.: Spiking Neural Network Performs Discrete Cosine Transform for Visual Images. Emerging Intelligent Computing Technology and Applications: With Aspects of Artificial Intelligence 5755, 21–29 (2009)

    Article  Google Scholar 

  9. Daubechies, I.: Ten Lectures On Wavelets. Society for Industrial and Applied Mathematics 61 (1992)

    Google Scholar 

  10. Chui, C.K.: An Introduction to Wavelets. Academic Press, New York (1992)

    MATH  Google Scholar 

  11. Liu, C.L.: A Tutorial of the Wavelet Transform (2010), http://disp.ee.ntu.edu

  12. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation 11, 674–693 (1989)

    Google Scholar 

  13. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (2008)

    Google Scholar 

  14. Wu, Q.X., McGinnity, T.M., Maguire, L., Belatreche, A., Glackin, B.: 2D co-ordinate transformation based on a spike timing-dependent plasticity learning mechanism. Neural Networks 21(9), 1318–1327 (2008)

    Article  MATH  Google Scholar 

  15. Wu, Q.X., McGinnity, M., Maguire, L., Glackin, B., Belatreche, A.: Learning Mechanisms in Networks of Spiking Neurons. In: Chen, K., Wang, L. (eds.) Trends in Neural Computation. SCI, vol. 35, pp. 171–197. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Wu, Q., McGinnity, M., Maguire, L., Belatreche, A., Glackin, B.: Edge Detection Based on Spiking Neural Network Model. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS (LNAI), vol. 4682, pp. 26–34. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Wu, Q.X., McGinnity, T.M., Maguire, L.P., Glackin, B., Belatreche, A.: Learning under weight constraints in networks of temporal encoding spiking neurons. Neurocomputing 69(16-18), 1912–1922 (2006)

    Article  Google Scholar 

  18. Wu, Q.X., Cai, R., McGinnity, T.M., Maguire, L., Harkin, J.: Remembering Key Features of Visual Images based on Spike Timing Dependent Plasticity of Spiking Neurons (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Z., Wu, Q., Zhuo, Z., Wang, X., Huang, L. (2013). Fast Wavelet Transform Based on Spiking Neural Network for Visual Images. In: Huang, DS., Gupta, P., Wang, L., Gromiha, M. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2013. Communications in Computer and Information Science, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39678-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39678-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39677-9

  • Online ISBN: 978-3-642-39678-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics