Skip to main content

An Adaptive Controller Using Wavelet Network for Five-Bar Manipulators with Deadzone Inputs

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 375))

Included in the following conference series:

  • 1630 Accesses

Abstract

In this paper, an adaptive model-based control scheme is proposed for tracking control of five-bar manipulators with deadzone inputs. The proposed controller is based on the combination of nominal dynamic model of the five-bar manipulator, a wavelet network and a deadzone precompensator. The wavelet network and the precompensator are used for compensating the unknown deadzone inputs, modeling errors and uncertainties of the five-bar manipulator. The adaptation laws are derived for tuning parameters of the precompensator and wavelet network. The efficiency of the proposed control scheme is verified by comparative simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexandridis, A.K., Zapranis, A.D.: Wavelet neural networks: A practical guide. Neural Networks 42, 1–27 (2013)

    Article  Google Scholar 

  2. Cao, J., Lin, Z., Huang, G.-B.: Composite function wavelet neural networks with extreme learning machine. Neurocomputing 73(7-9), 1405–1416 (2010)

    Article  Google Scholar 

  3. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Transactions on Neural Networks 3(6), 889–898 (1992)

    Article  Google Scholar 

  4. Lewis, F.L., et al.: Deadzone compensation in motion control systems using adaptive fuzzy logic control. IEEE Transactions on Control Systems Technology 7(6), 731–742 (1999)

    Article  Google Scholar 

  5. Selmic, R.R., Lewis, F.L.: Deadzone compensation in motion control systems using neural networks. IEEE Transactions on Automatic Control 45(4), 602–613 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chuxiong, H., Bin, Y., Qingfeng, W.: Performance-Oriented Adaptive Robust Control of a Class of Nonlinear Systems Preceded by Unknown Dead Zone With Comparative Experimental Results. IEEE/ASME Transactions on Mechatronics 18(1) (2013)

    Google Scholar 

  7. Chuxiong, H., Bin, Y., Qingfeng, W.: Adaptive Robust Precision Motion Control of Systems With Unknown Input Dead-Zones: A Case Study With Comparative Experiments. IEEE Transactions on Industrial Electronics 58(6), 2454–2464 (2011)

    Article  Google Scholar 

  8. Wang, X.-S., Su, C.-Y., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3), 407–413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiang, C.-C.: Adaptive Fuzzy Tracking Control for Uncertain Nonlinear Time-Delay Systems with Unknown Dead-Zone Input. Mathematical Problems in Engineering (2013)

    Google Scholar 

  10. Shaocheng, T., Yongming, L.: Adaptive Fuzzy Output Feedback Control of MIMO Nonlinear Systems With Unknown Dead-Zone Inputs. IEEE Transactions on Fuzzy Systems 21(1), 134–146 (2013)

    Article  Google Scholar 

  11. Le, T.D., et al.: An online self-gain tuning method using neural networks for nonlinear PD computed torque controller of a 2-dof parallel manipulator. Neurocomputing (2012)

    Google Scholar 

  12. Le, T.D., Kang, H.-J., Suh, Y.-S.: Chattering-Free Neuro-Sliding Mode Control of 2-DOF Planar Parallel Manipulators. Internation Journal of Advanced Robotic Systems (October 22, 2013)

    Google Scholar 

  13. Lin, C.K.: Adaptive tracking controller design for robotic systems using Gaussian wavelet networks. IEE Proceedings Control Theory and Applications 149(4), 316–322 (2002)

    Article  Google Scholar 

  14. Le Tien, D., Hee-Jun, K., Young-Shick, R.: Robot manipulator modeling in Matlab-SimMechanics with PD control and online gravity compensation. In: 2010 International Forum on Strategic Technology, IFOST (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le, T.D., Kang, HJ. (2013). An Adaptive Controller Using Wavelet Network for Five-Bar Manipulators with Deadzone Inputs. In: Huang, DS., Gupta, P., Wang, L., Gromiha, M. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2013. Communications in Computer and Information Science, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39678-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39678-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39677-9

  • Online ISBN: 978-3-642-39678-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics