Skip to main content

A Multi-objective Particle Swarm Optimization Based on Decomposition

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 375))

Included in the following conference series:

Abstract

Decomposition is a classic method in traditional multi-objective optimization problems (MOPs). However, so far it has not yet been widely used in multi-objective particle swarm optimization (MOPSO). This paper proposes a MOPSO based on decomposition strategy (MOPSO-D), in which MOPs is decomposed into a number of scalar optimization sub-problems by a set of even spread weight vectors, and each sub-problem is optimized by a particle (here, it is viewed as a sub-swarm) personal history best position (pbest) and global best position in the its all neighbors (gbest) in a single run. By computing the Euclidean distances between any two weight vectors corresponding to a particle, the neighborhood identification strategy of each particle is assigned. The method of decomposition inherited the traditional method merits and makes MOPSO-D have lower computational complexity at each generation than NSMOPSO and OMOPSO. Simulation experiments on multi-objective 0-1 knapsack problems and continuous multi-objective optimization problems show MOPSO-D outperforms or performs similarly to NSMOPSO and OMOPSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello, C.A.C., Lechuga, M.S.: MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In: IEEE Congress on Evolutionary Computation, Piscataway, New Jersey, pp. 1051–1056. IEEE Press, New York (2002)

    Google Scholar 

  2. Hu, X., Eberhart, R.C.: Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization. In: Proceedings of the 2002 Congress on Evolutionary, Honolulu, Hi, pp. 1677–1681. IEEE Press, New York (2002)

    Google Scholar 

  3. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the 2002 Conference on Neural Networks, Piscataway, pp. 1942–1948. IEEE Press, New York (1995)

    Google Scholar 

  4. Li, X.: A Non-dominated Sorting Particle Swarm Optimizer for Multi-objective Optimization. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Mostaghim, S., Teich, J.: Strategies for Finding Good Local Guides in Multi-objective Particle Swarm Optimization (MOPSO). In: IEEE Swarm Intelligence Symposium, Indianapolis, pp. 26–33. IEEE Press, New York (2003)

    Google Scholar 

  6. Mostaghim, S., Teich, J.: The Role of ε-dominance in Multi-Objective Particle Swarm Optimization Methods. In: IEEE Congress on Evolutionary Computation, Canberra, Australia, pp. 1764–1771. IEEE Press, New York (2003)

    Google Scholar 

  7. Jin, Y., Okabe, T., Sendhoff, B.: Adapting Weighted Aggregation for Multiobjective Evolution Strategies. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Liu, Y.M., Niu, B.: A Novel PSO Model Based on Simulating Human Social Communication Behavior. Discrete Dynamics in Nature and Society, 1-21 (2012)

    Google Scholar 

  9. Bazgan, C., Hugot, H., Vanderpooten, D.: Solving Efficiently the 0-1 Multi-objective Knapsack Problem, vol. 36, pp. 260–279 (2009)

    Google Scholar 

  10. Hughes, E.J.: Multiple single objective Pareto sampling. In: IEEE Congress on Evolutionary Computation, Canberra, Australia, pp. 2678–2684. IEEE Press, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Niu, B. (2013). A Multi-objective Particle Swarm Optimization Based on Decomposition. In: Huang, DS., Gupta, P., Wang, L., Gromiha, M. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2013. Communications in Computer and Information Science, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39678-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39678-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39677-9

  • Online ISBN: 978-3-642-39678-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics