Skip to main content

What Is the Uniqueness of Growth Pattern in Human Flesh Search Organization?

  • Conference paper
Intelligence and Security Informatics (PAISI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8039))

Included in the following conference series:

Abstract

Human Flesh Search is an explosive Web phenomenon these years in China, especially when new media, such as Weibo, appeared. In this research, we present the empirical studies about growing patterns of participated Human Flesh Search user, and unveiled one unique growing property. Based on the empirical findings, we compare it with two others results, one is the common Weibo’s growth pattern, and the other is the popularity growth pattern of photo in Flickr. Some differences are proposed and analyzed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, F.Y., Zeng, D., et al.: A study of the Human Flesh Search engine: crowdpowered expansion of online knowledge. Computer 43(8), 45–53 (2010)

    Article  MathSciNet  Google Scholar 

  2. Cheng, L., Zhang, L., Wang, J.: A study of Human Flesh Search with epidemic models. In: Proceedings of the 3rd Annual ACM Web Science Conference, pp. 67–73 (2012)

    Google Scholar 

  3. Zhang, Q., Wang, F.Y., Zeng, D., Wang, T.: Understanding Crowd-Powered Search Groups: A Social Network Perspective. PloS One 7, e39749 (2012)

    Google Scholar 

  4. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th International Conference on World Wide Web, pp. 721–730 (2009)

    Google Scholar 

  5. Zhang, S., Xu, K., Li, H.: Measurement and Analysis of Information Propagation in Online Social Networks like Microblog. Journal if Xi’AnJiaotong University 47(2) (2013)

    Google Scholar 

  6. Barabási, A.: Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)

    Article  MathSciNet  Google Scholar 

  7. Ahn, Y., Bagrow, J., et al.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Article  Google Scholar 

  8. Wang, B., Hou, B., et al.: Human Flesh Search model incorporating networkexpansion and GOSSIP with feedback. In: 13th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, pp. 82–88 (2009)

    Google Scholar 

  9. Wang, B., Yao, Y., Hou, B., Liao, D., Chen, D.: Knowledge aggregation in Human Flesh Search. In: 2010 IEEE/ACM International Conference on Cyber, Physical and Social Computing, pp. 825–830 (2010)

    Google Scholar 

  10. Eubank, S., Guclu, H., et al.: Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)

    Article  Google Scholar 

  11. Zhang, Q., Feng, Z., et al.: Modeling cyber-enabled crowd-powered search. In: The Second Chinese Conference on Social Computing, Beijing (2010)

    Google Scholar 

  12. Sai, H., Orito, Y.: Information offering by anonymous in Japanese Human Flesh Search: Analysis of motivation in social media platform. In: IEEE/IPSJ International Symposium on Applications and the Internet, pp. 592–595 (2011)

    Google Scholar 

  13. Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)

    Google Scholar 

  14. Valente, T.W.: Network Models of the Diffusion of Innovations. Hampton Press, Cresskill (1995)

    Google Scholar 

  15. Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., Hurst, M.: Patterns of Cascading behavior in large blog graphs. In: The 7th SIAM International Conference on Data Mining (SDM 2007), pp. 551–556 (2007)

    Google Scholar 

  16. Wang, D., Wen, Z., Tong, H., Lin, C.-Y., Song, C., et al.: Information Spreading in Context. In: The 20th International World Wide Web Conference (WWW), pp. 735–744 (2011)

    Google Scholar 

  17. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social networks. In: The International Workshop on Mining Software Repositories, pp. 137–143 (2006)

    Google Scholar 

  18. Long, C., Zhang, L., Wang, J.: A study of human flesh search with epidemic models. In: Proceedings of the 3rd Annual ACM Web Science Conference, pp. 67–73 (2012)

    Google Scholar 

  19. Wang, T., Zhang, Q., Liu, Z., Liu, W., Wen, D.: On social computing research collaboration patterns: a social network perspective. Frontiers of Computer Science 6(1), 122–130 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T., Zhang, Q., Fu, J., Wang, X., Zheng, S. (2013). What Is the Uniqueness of Growth Pattern in Human Flesh Search Organization?. In: Wang, G.A., Zheng, X., Chau, M., Chen, H. (eds) Intelligence and Security Informatics. PAISI 2013. Lecture Notes in Computer Science, vol 8039. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39693-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39693-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39692-2

  • Online ISBN: 978-3-642-39693-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics